Dynamically Instance-Guided Adaptation: A Backward-free Approach for Test-Time Domain Adaptive Semantic Segmentation

In this paper, we study the application of Test-time domain adaptation in semantic segmentation (TTDA-Seg) where both efficiency and effectiveness are crucial. Existing methods either have low efficiency (e.g., backward optimization) or ignore semantic adaptation (e.g., distribution alignment). Besides, they would suffer from the accumulated errors caused by unstable optimization and abnormal distributions. To solve these problems, we propose a novel backward-free approach for TTDA-Seg, called Dynamically Instance-Guided Adaptation (DIGA). Our principle is utilizing each instance to dynamically guide its own adaptation in a non-parametric way, which avoids the error accumulation issue and expensive optimizing cost. Specifically, DIGA is composed of a distribution adaptation module (DAM) and a semantic adaptation module (SAM), enabling us to jointly adapt the model in two indispensable aspects. DAM mixes the instance and  source BN statistics to encourage the model to capture robust representation. SAM combines the historical prototypes with instance-level prototypes to adjust semantic predictions, which can be associated with the parametric classifier to mutually benefit the final results. Extensive experiments evaluated on five target domains demonstrate the effectiveness and efficiency of the proposed method. Our DIGA establishes new state-of-theart performance in TTDA-Seg. Source code is available at: https://github.com/Waybaba/DIGA.

Masked Jigsaw Puzzle: A Versatile Position Embedding for Vision Transformers

Position Embeddings (PEs), an arguably indispensable component in Vision Transformers (ViTs), have been shown to improve the performance of ViTs on many vision tasks. However, PEs have a potentially high risk of privacy leakage since the spatial information of the input patches is exposed. This caveat naturally raises a series of interesting questions about the impact of PEs on accuracy, privacy, prediction consistency, etc. To tackle these issues, we propose a Masked Jigsaw Puzzle (MJP) position embedding method. In particular, MJP first shuffles the selected patches via our block-wise random jigsaw puzzle shuffle algorithm, and their corresponding PEs are occluded. Meanwhile, for the nonoccluded patches, the PEs remain the original ones but their spatial relation is strengthened via our dense absolute localization regressor. The experimental results reveal that 1) PEs explicitly encode the 2D spatial relationship and lead to severe privacy leakage problems under gradient inversion attack; 2) Training ViTs with the naively shuffled patches can alleviate the problem, but it harms the accuracy; 3) Under a certain shuffle ratio, the proposed MJP not only boosts the performance and robustness on large-scale datasets (i.e.,
ImageNet-1K and ImageNet-C, -A/O) but also improves the privacy preservation ability under typical gradient attacks by a large margin. The source code and trained models are available at https://github.com/yhlleo/MJP.

Dynamic Conceptional Contrastive Learning for Generalized Category Discovery

Generalized category discovery (GCD) is a recently proposed open-world problem, which aims to automatically cluster partially labeled data. The main challenge is that the unlabeled data contain instances that are not only from known categories of the labeled data but also from novel categories. This leads traditional novel category discovery (NCD) methods to be incapacitated for GCD, due to their assumption of unlabeled data are only from novel categories. One effective way for GCD is applying self-supervised learning to learn discriminate representation for unlabeled data. However, this manner largely ignores underlying relationships between instances of the same concepts
(e.g., class, super-class, and sub-class), which results in inferior representation learning. In this paper, we propose a Dynamic Conceptional Contrastive Learning (DCCL) framework, which can effectively improve clustering accuracy by alternately estimating underlying visual
conceptions and learning conceptional representation. In addition, we design a dynamic conception generation and update mechanism, which is able to ensure consistent conception learning and thus further facilitate the optimization of DCCL. Extensive experiments show that DCCL achieves new state-of-the-art performances on six generic and fine-grained visual recognition datasets, especially on fine-grained ones. For example, our method significantly surpasses the best competitor by 16.2% on the new classes for the CUB-200 dataset. Code is available at https://github.com/TPCD/DCCL.

Latent Traversals in Generative Models as Potential Flows

Despite the significant recent progress in deep generative models, the underlying structure of their latent spaces is still poorly understood, thereby making the task of performing semantically meaningful latent traversals an open research challenge. Most prior work has aimed to solve this challenge by modeling latent structures linearly, and finding corresponding linear directions which result in ‘disentangled’ generations. In this work, we instead propose to model latent structures with a learned dynamic potential landscape, thereby performing latent traversals as the flow of samples down the landscape’s gradient. Inspired by physics, optimal transport, and neuroscience, these potential landscapes are learned as physically realistic partial differential equations, thereby allowing them to flexibly vary over both space and time. To achieve disentanglement, multiple potentials are learned simultaneously, and are constrained by a classifier to be distinct and semantically self-consistent. Experimentally, we demonstrate that our method achieves both more qualitatively and quantitatively disentangled trajectories than state-of-the-art baselines. Further, we demonstrate that our method can be integrated as a regularization term during training, thereby acting as an inductive bias towards the learning of structured representations, ultimately improving model likelihood on similarly structured data. Code is available at https://github.com/ KingJamesSong/PDETraversal.

ISF-GAN: An Implicit Style Function for High Resolution Image-to-Image Translation

Recently, there has been an increasing interest in image editing methods that employ pre-trained unconditional image generators (e.g., StyleGAN). However, applying these methods to translate images to multiple visual domains remains challenging. Existing works do not often preserve the domain-invariant part of the image (e.g., the identity in human face translations), or they do not usually handle multiple domains or allow for multi-modal translations. This work proposes an implicit style function (ISF) to straightforwardly achieve multi-modal and multi-domain image-to-image translation from pre-trained unconditional generators. The ISF manipulates the semantics of a latent code to ensure that the image generated from the manipulated code lies in the desired visual domain. Our human faces and animal image manipulations show significantly improved results over the baselines. Our model enables cost-effective multi-modal unsupervised image-to-image translations at high resolution using pre-trained unconditional GANs. The code and data are available at: https://github.com/yhlleo/stylegan-mmuit.


Orthogonal SVD Covariance Conditioning and Latent Disentanglement

Inserting an SVD meta-layer into neural networks is prone to make the covariance ill-conditioned, which could harm the model in the training stability and generalization abilities. In this article, we systematically study how to improve the covariance conditioning by enforcing orthogonality to the Pre-SVD layer. Existing orthogonal treatments on the weights are first investigated. However, these techniques can improve the conditioning but would hurt the performance. To avoid such a side effect, we propose the Nearest Orthogonal Gradient (NOG) and Optimal Learning Rate (OLR). The effectiveness of our methods is validated in two applications: decorrelated Batch Normalization (BN) and Global Covariance Pooling (GCP). Extensive experiments on visual recognition demonstrate that our methods can simultaneously improve covariance conditioning and generalization. The combinations with orthogonal weight can further boost the performance. Moreover, we show that our orthogonality techniques can benefit generative models for better latent disentanglement through a series of experiments on various benchmarks. Code is available at: https://github.com/KingJamesSong/OrthoImproveCond.

Logit Margin Matters: Improving Transferable Targeted Adversarial Attack by Logit Calibration

Previous works have extensively studied the transferability of adversarial samples in untargeted black-box scenarios. However, it still remains challenging to craft targeted adversarial examples with higher transferability than non-targeted ones. Recent studies reveal that the traditional Cross-Entropy (CE) loss function is insufficient to learn transferable targeted adversarial examples due to the issue of vanishing gradient. In this work, we provide a comprehensive investigation of the CE loss function and find that the logit margin between the targeted and untargeted classes will quickly obtain saturation in CE, which largely limits the transferability. Therefore, in this paper, we devote to the goal of continually increasing the logit margin along the optimization to deal with the saturation issue and propose two simple and effective logit calibration methods, which are achieved by downscaling the logits with a temperature factor and an adaptive margin, respectively. Both of them can effectively encourage optimization to produce a larger logit margin and lead to higher transferability. Besides, we show that minimizing the cosine distance between the adversarial examples and the classifier weights of the target class can further improve the transferability, which is benefited from downscaling logits via L2-normalization. Experiments conducted on the ImageNet dataset validate the effectiveness of the proposed methods, which outperform the state-of-the-art methods in black-box targeted attacks.

Multi-Channel Attention Selection GANs for Guided Image-to-Image Translation

We propose a novel model named Multi-Channel Attention Selection Generative Adversarial Network (SelectionGAN) for guided image-to-image translation, where we translate an input image into another while respecting an external semantic guidance. The proposed SelectionGAN explicitly utilizes the semantic guidance information and consists of two stages. In the first stage, the input image and the conditional semantic guidance are fed into a cycled semantic-guided generation network to produce initial coarse results. In the second stage, we refine the initial results by using the proposed multi-scale spatial pooling & channel selection module and the multi-channel attention selection module. Moreover, uncertainty maps automatically learned from attention maps are used to guide the pixel loss for better network optimization. Exhaustive experiments on four challenging guided image-to-image translation tasks (face, hand, body, and street view) demonstrate that our SelectionGAN is able to generate significantly better results than the state-of-the-art methods. Meanwhile, the proposed framework and modules are unified solutions and can be applied to solve other generation tasks such as semantic image synthesis. The code is available at https://github.com/Ha0Tang/SelectionGAN.