Author: Luca Ciampi;
Development of a Realistic Crowd Simulation Environment for Fine-grained Validation of People Tracking Methods
CrowdSim2: an Open Synthetic Benchmark for Object Detectors
A Spatio-Temporal Attentive Network for Video-Based Crowd Counting
MC-GTA: A Synthetic Benchmark for Multi-Camera Vehicle Tracking
Multi-camera vehicle tracking (MCVT) aims to trace multiple vehicles among videos gathered from overlapping and non-overlapping city cameras. It is beneficial for city-scale traffic analysis and management as well as for security. However, developing MCVT systems is tricky, and their real-world applicability is dampened by the lack of data for training and testing computer vision deep learning-based solutions. Indeed, creating new annotated datasets is cumbersome as it requires great human effort and often has to face privacy concerns. To alleviate this problem, we introduce MC-GTA – Multi Camera Grand Tracking Auto, a synthetic collection of images gathered from the virtual world provided by the highly-realistic Grand Theft Auto 5 (GTA) video game. Our dataset has been recorded from several cameras recording urban scenes at various crossroads. The annotations, consisting of bounding boxes localizing the vehicles with associated unique IDs consistent across the video sources, have been automatically generated by interacting with the game engine. To assess this simulated scenario, we conduct a performance evaluation using an MCVT SOTA approach, showing that it can be a valuable benchmark that mitigates the need for real-world data. The MC-GTA dataset and the code for creating new ad-hoc custom scenarios are available at https://github.com/GaetanoV10/GT5-Vehicle-BB.