2023 . 10 . 2

MaskCon: Masked Contrastive Learning for Coarse-Labelled Dataset

Deep learning has achieved great success in recent years with the aid of advanced neural network structures and large-scale human-annotated datasets. However, it is often costly and difficult to accurately and efficiently annotate large-scale datasets, especially for some specialized domains where fine-grained labels are required. In this setting, coarse labels are much easier to acquire as they do not require expert knowledge. In this work, we propose a contrastive learning method, called masked contrastive learning (MaskCon) to address the under-explored problem setting, where we learn with a coarse-labelled dataset in order to address a finer labelling problem. More specifically, within the contrastive learning framework, for each sample our method generates soft-labels with the aid of coarse labels against other samples and another augmented view of the sample in question. By contrast to self-supervised contrastive learning where only the sample’s augmentations are considered hard positives, and in supervised contrastive learning where only samples with the same coarse labels are considered hard positives, we propose soft labels based on sample distances, that are masked by the coarse labels. This allows us to utilize both inter-sample relations and coarse labels. We demonstrate that our method can obtain as special cases many existing state-of-the-art works and that it provides tighter bounds on the generalization error. Experimentally, our method achieves significant improvement over the current state-of-the-art in various datasets, including CIFAR10, CIFAR100, ImageNet-1K, Standford Online Products and Stanford Cars196 datasets.

COOKIES

AI4Media may use cookies to store your login data, collect statistics to optimize the website's functionality and to perform marketing actions based on your interests.

COOKIES
They allow you to browse the website and use its applications as well as to access secure areas of the website. Without these cookies, the services you have requested cannot be provided.
These cookies are necessary to allow the main functionality of the website and they are activated automatically when you enter this website. They store user preferences for site usage so that you do not need to reconfigure the site each time you visit it.
These cookies direct advertising according to the interests of each user so as to direct advertising campaigns, taking into account the tastes of users, and they also limit the number of times you see the ad, helping to measure the effectiveness of advertising and the success of the website organisation.

Required Cookies They allow you to browse the website and use its applications as well as to access secure areas of the website. Without these cookies, the services you have requested cannot be provided.

Functional Cookies These cookies are necessary to allow the main functionality of the website and they are activated automatically when you enter this website. They store user preferences for site usage so that you do not need to reconfigure the site each time you visit it.

Advertising Cookies These cookies direct advertising according to the interests of each user so as to direct advertising campaigns, taking into account the tastes of users, and they also limit the number of times you see the ad, helping to measure the effectiveness of advertising and the success of the website organisation.