Nikolaos Giatsoglou; Emmanouil Krasanakis; Symeon Papadopoulos; Ioannis Kompatsiaris
Abstract:
Decentralization is emerging as a key feature of the future Internet. However, effective algorithms for search are missing from state-of-the-art decentralized technologies, such as distributed hash tables and blockchain. This is surprising, since decentralized search has been studied extensively in earlier peer- to-peer (P2P) literature. In this work, we adopt a fresh outlook for decentralized search in P2P networks that is inspired by advancements in dense information retrieval and graph signal processing. In particular, we generate latent representations of P2P nodes based on their stored documents and diffuse them to the rest of the network with graph filters, such as person- alized PageRank. We then use the diffused representations to guide search queries towards relevant content. Our preliminary approach is successful in locating relevant documents in nearby nodes but the accuracy declines sharply with the number of stored documents, highlighting the need for more sophisticated techniques.
Lorenzo Berlincioni University of Florence, Italy; Federico Becattini; Lorenzo Seidenari; Alberto Del Bimbo
Abstract:
Trajectory prediction is an important task, especially in autonomous driving. The ability to forecast the position of other moving agents can yield to an effective planning, ensuring safety for the autonomous vehicle as well for the observed entities. In this work we propose a data driven approach based on Markov Chains to generate synthetic trajectories, which are useful for training a multiple future trajectory predictor. The advantages are twofold: on the one hand synthetic samples can be used to augment existing datasets and train more effective predictors; on the other hand, it allows to generate samples with multiple ground truths, corresponding to diverse equally likely outcomes of the observed trajectory. We define a trajectory prediction model and a loss that explicitly address the multimodality of the problem and we show that combining synthetic and real data leads to prediction improvements, obtaining state of the art results.
Naima Otberdout; Claudio Ferrari; Mohamed Daoudi; Stefano Berretti; Alberto Del Bimbo
Abstract:
In this paper, we propose a solution to the task of generating dynamic 3D facial expressions from a neutral 3D face and an expression label. This involves solving two sub-problems: (i) modeling the temporal dynamics of expressions, and (ii) deforming the neutral mesh to obtain the expressive counterpart. We represent the temporal evolution of expressions using the motion of a sparse set of 3D landmarks that we learn to generate by training a manifold-valued GAN (Motion3DGAN). To better encode the expression-induced deformation and disentangle it from the identity information, the generated motion is represented as per-frame displacement from a neutral configuration. To generate the expressive meshes, we train a Sparse2Dense mesh Decoder (S2D-Dec) that maps the landmark displacements to a dense, per-vertex displacement. This allows us to learn how the motion of a sparse set of landmarks influences the deformation of the overall face surface, independently from the identity. Experimental results on the CoMA and D3DFACS datasets show that our solution brings significant improvements with respect to previous solutions in terms of both dynamic expression generation and mesh reconstruction, while retaining good generalization to unseen data. The code and the pretrained model will be made publicly available.
Werner Bailer
Abstract:
Few-shot object detection is useful in order to extend object detection capabilities in media production and archiving applications with specific object classes of interest for a particular organization or production context. While recent approaches for few-shot object detection have advanced the state of the art, they still do not fully meet the requirements of practical workflows, e.g., in media production and archiving. In these applications, annotated samples for novel classes are drawn from different data sources, they differ in numbers and it may be necessary to add a new class quickly to cover the requirements of a specific production. In contrast, current frameworks for few-shot object detection typically assume a static dataset, which is split into the base and novel classes. We propose a toolchain to facilitate training for few-shot object detection, which takes care of data preparation when using heterogeneous training data and setup of training steps. The toolchain also creates annotation files to use combined data sets as new base models, which facilitates class-incremental training. We also integrated the toolchain with an annotation UI.
Werner Bailer; Georg Thallinger; Verena Krawarik; Katharina Schell; Victoria Ertelthalner
Abstract:
Tools based on artificial intelligence (AI) are increasingly used in the media industry, addressing a potentially wide range of application areas. Based on a survey involving media professionals and technology providers, we present a taxonomy of application areas of AI in the media industry, including an assessment of the maturity of AI technology for the respective application. As many of these applications require human oversight, either due to insufficient maturity of technology or the need for editorial control, we also propose a classification of automation levels for AI in the media domain, with examples for different stages of the media value chain. Both of these aspects are strongly linked to the role of human users and their interaction with AI technologies. The results suggest that human-AI collaboration in media applications is still an unsolved research question.
Yue Song University of Trento, Italy; Nicu Sebe; Wei Wang
Abstract:
Computing the matrix square root or its inverse in a differentiable manner is important in a variety of computer vision tasks. Previous methods either adopt the Singular Value Decomposition (SVD) to explicitly factorize the matrix or use the Newton-Schulz iteration (NS iteration) to derive the approximate solution. However, both methods are not computationally efficient enough in either the forward pass or in the backward pass. In this paper, we propose two more efficient variants to compute the differentiable matrix square root. For the forward propagation, one method is to use Matrix Taylor Polynomial (MTP), and the other method is to use Matrix Pad´e Approximants (MPA). The backward gradient is computed by iteratively solving the continuous-time Lyapunov equation using the matrix sign function. Both methods yield considerable speed-up compared with the SVD or the Newton-Schulz iteration. Experimental results on the de-correlated batch normalization and second-order vision transformer demonstrate that our methods can also achieve competitive and even slightly better performances. The code is available at https://github.com/KingJamesSong/FastDifferentiableMatSqrt.
Fabio Carrara; Lorenzo Pasco; Claudio Gennaro; Fabrizio Falchi
Abstract:
A synthetic dataset for visual fallen people detection comprising images extracted from the highly photo-realistic video game Grand Theft Auto V developed by Rockstar North. Each image is labeled by the game engine providing bounding boxes and statuses (fallen or non-fallen) of people present in the scene. The dataset comprises 6,071 synthetic images depicting 7,456 fallen and 26,125 non-fallen pedestrian instances in various looks, camera positions, background scenes, lightning, and occlusion conditions.
Jakub Lokoč; Werner Bailer; Kai Uwe Barthel; Cathal Gurrin; Silvan Heller; Björn Þór Jónsson; Ladislav Peška; Luca Rossetto; Klaus Schoeffmann; Lucia Vadicamo; Stefanos Vrochidis; Jiaxin Wu
Abstract:
In the last decade, user-centric video search competitions have facilitated the evolution of interactive video search systems. So far, these competitions focused on a small number of search task categories, with few attempts to change task category configurations. Based on our extensive experience with interactive video search contests, we have \mbox{analyzed} the spectrum of possible task categories and propose a list of individual axes that define a large space of possible task categories. Using this concept of category space, new user-centric video search competitions can be designed to benchmark video search systems from different perspectives. We further analyse the three task categories considered so far at the Video Browser Showdown and discuss possible (but sometimes challenging) shifts within the task category space.
Esuli; Moreo; Sebastiani
Abstract:
LeQua 2022 is a new lab for the evaluation of methods for “learning to quantify” in textual datasets, i.e., for training predictors of the relative frequencies of the classes of interest in sets of unlabelled textual documents. While these predictions could be easily achieved by first classifying all documents via a text classifier and then counting the numbers of documents assigned to the classes, a growing body of literature has shown this approach to be suboptimal, and has proposed better methods. The goal of this lab is to provide a setting for the comparative evaluation of methods for learning to quantify, both in the binary setting and in the single-label multiclass setting. For each such setting we provide data either in ready-made vector form or in raw document form.
Adrian Popescu Université Paris-Saclay, CEA, List, France; Liviu-Daniel Stefan; Jérôme Deshayes-Chossart; Bogdan Ionescu
Abstract:
Face verification aims to distinguish between genuine and imposter pairs of faces, which include the same or different identities, respectively. The performance reported in recent years gives the impression that the task is practically solved. Here, we revisit the problem and argue that existing evaluation datasets were built using two oversimplifying design choices. First, the usual identity selection to form imposter pairs is not challenging enough because, in practice, verification is needed to detect challenging imposters. Second, the underlying demographics of existing datasets are often insufficient to account for the wide diversity of facial characteristics of people from across the world. To mitigate these limitations, we introduce the FaVCI2D dataset. Imposter pairs are challenging because they include visually similar faces selected from a large pool of demographically diversified identities. The dataset also includes metadata related to gender, country and age to facilitate fine-grained analysis of results. FaVCI2D is generated from freely distributable resources. Experiments with state-of-the-art deep models that provide nearly 100% performance on existing datasets show a significant performance drop for FaVCI2D, confirming our starting hypothesis. Equally important, we analyze legal and ethical challenges which appeared in recent years and hindered the development of face analysis research. We introduce a series of design choices which address these challenges and make the dataset constitution and usage more sustainable and fairer. FaVCI2D is available at https://github.com/AIMultimediaLab/FaVCI2D-Face-Verification-with-Challenging-Imposters-and-Diversified-Demographics.
Adrian Popescu Université Paris-Saclay, CEA, LIST, France; Jérôme Deshayes-Chossart; Bogdan Ionescu
Abstract:
Images constitute a large part of the content shared on social networks. Their disclosure is often related to a particular context and users are often unaware of the fact that, depending on their privacy status, images can be accessible to third parties and be used for purposes which were initially unforeseen. For instance, it is common practice for employers to search information about their future employees online. Another example of usage is that of automatic credit scoring based on online data. Most existing approaches which propose feedback about shared data focus on inferring user characteristics and their practical utility is rather limited. We hypothesize that user feedback would be more efficient if conveyed through the real-life effects of data sharing. The objective of the task is to automatically score user photographic profiles in a series of situations with strong impact on her/his life. Four such situations were modeled this year and refer to searching for: (1) a bank loan, (2) an accommodation, (3) a job as waitress/waiter and (4) a job in IT. The inclusion of several situations is interesting in order to make it clear to the end users of the system that the same image will be interpreted differently depending on the context. The final objective of the task is to encourage the development of efficient user feedback, such as the YDSYO Android app.
Alejandro Moreo; Fabrizio Sebastiani
Abstract:
Sentiment quantification is the task of training, by means of supervised learning, estimators of the relative frequency (also called ``prevalence'') of sentiment-related classes (such as Positive, Neutral, Negative) in a sample of unlabelled texts. This task is especially important when these texts are tweets, since the final goal of most sentiment classification efforts carried out on Twitter data is actually quantification (and not the classification of individual tweets). It is well-known that solving quantification by means of ``classify and count'' (i.e., by classifying all unlabelled items by means of a standard classifier and counting the items that have been assigned to a given class) is less than optimal in terms of accuracy, and that more accurate quantification methods exist. Gao and Sebastiani~\cite{Gao:2016uq carried out a systematic comparison of quantification methods on the task of tweet sentiment quantification. In hindsight, we observe that the experimentation carried out in that work was weak, and that the reliability of the conclusions that were drawn from the results is thus questionable. We here re-evaluate those quantification methods (plus a few more modern ones) on exactly the same datasets, this time following a now consolidated and robust experimental protocol (which also involves simulating the presence, in the test data, of class prevalence values very different from those of the training set). This experimental protocol (even without counting the newly added methods) involves a number of experiments 5,775 times larger than that of the original study. Due to the above-mentioned presence, in the test data, of samples characterised by class prevalence values very different from those of the training set, the results of our experiments are dramatically different from those obtained by Gao and Sebastiani, and provide a different, much more solid understanding of the relative strengths and weaknesses of different sentiment quantification methods.
Claudio Ferrari; Federico Fecattini; Leonardo Galteri; Alberto Del Bimbo
Abstract:
Modern image classification approaches often rely on deep neural networks, which have shown pronounced weakness to adversarial examples: images corrupted with specifically designed yet imperceptible noise that causes the network to misclassify. In this paper, we propose a conceptually simple yet robust solution to tackle adversarial attacks on image classification. Our defense works by first applying a JPEG compression with a random quality factor; compression artifacts are subsequently removed by means of a generative model (AR-GAN). The process can be iterated ensuring the image is not degraded and hence the classification not compromised. We train different AR-GANs for different compression factors, so that we can change its parameters dynamically at each iteration depending on the current compression, making the gradient approximation difficult. We experiment our defense against three white-box and two black-box attacks, with a particular focus on the state-of-the-art BPDA attack. Our method does not require any adversarial training, and is independent of both the classifier and the attack. Experiments demonstrate that dynamically changing the AR-GAN parameters is of fundamental importance to obtain significant robustness.
Yahui Liu University of Trento, Italy; Enver Sangineto; Wei Bi; Niculae Sebe; Bruno Lepri; Marco de Nadai
Abstract:
Visual Transformers (VTs) are emerging as an architectural paradigm alternative to Convolutional networks (CNNs). Differently from CNNs, VTs can capture global relations between image elements and they potentially have a larger representation capacity. However, the lack of the typical convolutional inductive bias makes these models more data hungry than common CNNs. In fact, some local properties of the visual domain which are embedded in the CNN architectural design, in VTs should be learned from samples. In this paper, we empirically analyse different VTs, comparing their robustness in a small training set regime, and we show that, despite having a comparable accuracy when trained on ImageNet, their performance on smaller datasets can be largely different. Moreover, we propose an auxiliary selfsupervised task which can extract additional information from images with only a negligible computational overhead. This task encourages the VTs to learn spatial relations within an image and makes the VT training much more robust when training data is scarce. Our task is used jointly with the standard (supervised) training and it does not depend on specific architectural choices, thus it can be easily plugged in the existing VTs. Using an extensive evaluation with different VTs and datasets, we show that our method can improve (sometimes dramatically) the final accuracy of the VTs. Our code is available at: https://github.com/ yhlleo/VTs-Drloc.
Haoyu Chen University of Oulu; Hao Tang; Zitong Yu; Niculae Sebe; Guoying Zhao
Abstract:
We present a customized 3D mesh Transformer model for the pose transfer task. As the 3D pose transfer essentially is a deformation procedure dependent on the given meshes, the intuition of this work is to perceive the geometric inconsistency between the given meshes with the powerful self-attention mechanism. Specifically, we propose a novel geometry-contrastive Transformer that has an efficient 3D structured perceiving ability to the global geometric inconsistencies across the given meshes. Moreover, locally, a simple yet efficient central geodesic contrastive loss is further proposed to improve the regional geometric-inconsistency learning. At last, we present a latent isometric regularization module together with a novel semi-synthesized dataset for the cross-dataset 3D pose transfer task towards unknown spaces. The massive experimental results prove the efficacy of our approach by showing state-of-the-art quantitative performances on SMPL-NPT, FAUST and our new proposed dataset SMG- 3D datasets, as well as promising qualitative results on MGcloth and SMAL datasets. It’s demonstrated that our method can achieve robust 3D pose transfer and be generalized to challenging meshes from unknown spaces on cross-dataset tasks. The code and dataset are made available. Code is available: https://github.com/mikecheninoulu/CGT.
Victor G. Turrisi da Costa University of Trento, Italy; Enrico Fini; Moin Nabi; Niculae Sebe; Elisa Ricci
Abstract:
This paper presents solo-learn, a library of self-supervised methods for visual representation learning. Implemented in Python, using Pytorch and Pytorch lightning, the library ts both research and industry needs by featuring distributed training pipelines with mixed-precision, faster data loading via Nvidia DALI, online linear evaluation for better prototyping, and many additional training tricks. Our goal is to provide an easy-to- use library comprising a large amount of Self-supervised Learning (SSL) methods, that can be easily extended and ne-tuned by the community. solo-learn opens up avenues for exploiting large-budget SSL solutions on inexpensive smaller infrastructures and seeks to democratize SSL by making it accessible to all. The source code is available at https://github.com/vturrisi/solo-learn.
Emmanouil Krasanakis CERTH-ITI ; Symeon Papadopoulos; Ioannis Kompatsiaris
Abstract:
In this work, we aim to classify nodes of unstructured peer-to-peer networks with communication uncertainty, such as users of decentralized social networks. Graph Neural Networks (GNNs) are known to improve the accuracy of simpler classifiers in centralized settings by leveraging naturally occurring network links, but graph convolutional layers are challenging to implement in decentralized settings when node neighbors are not constantly available.We address this problem by employing decoupled GNNs, where base classifier predictions and errors are diffused through graphs after training. For these, we deploy pre-trained and gossip-trained base classifiers and implement peer-to-peer graph diffusion under communication uncertainty. In particular, we develop an asynchronous decentralized formulation of diffusion that converges at centralized predictions in distribution and linearly with respect to communication rates. We experiment on three real-world graphs with node features and labels and simulate peer-to-peer networks with uniformly random communication frequencies; given a portion of known labels, our decentralized graph diffusion achieves comparable accuracy to centralized GNNs with minimal communication overhead (less than 3% of what gossip training already adds).
Konstantinos Makantasis University of Malta; Antonios Liapis; Georgios N. Yannakakis
Abstract:
What if emotion could be captured in a general and subject-agnostic fashion? Is it possible, for instance, to design general-purpose representations that detect affect solely from the pixels and audio of a human-computer interaction video? In this paper we address the above questions by evaluating the capacity of deep learned representations to predict affect by relying only on audiovisual information of videos. We assume that the pixels and audio of an interactive session embed the necessary information required to detect affect. We test our hypothesis in the domain of digital games and evaluate the degree to which deep classifiers and deep preference learning algorithms can learn to predict the arousal of players based only on the video footage of their gameplay. Our results from four dissimilar games suggest that general-purpose representations can be built across games as the arousal models obtain average accuracies as high as 85% using the challenging leave-one-video-out cross-validation scheme. The dissimilar audiovisual characteristics of the tested games showcase the strengths and limitations of the proposed method.
Gabriele Lagani; Fabrizio Falchi; Claudio Gennaro; Giuseppe Amato
Abstract:
We explore competitive Hebbian learning strategies to train feature detectors in Convolutional Neural Networks (CNNs), without supervision. We consider variants of the Winner-Takes-All (WTA) strategy explored in previous works, i.e. k-WTA, e-soft-WTA and p-soft-WTA, performing experiments on different object recognition datasets. Results suggest that the Hebbian approaches are effective to train early feature extraction layers, or to re-train higher layers of a pre-trained network, with soft competition generally performing better than other Hebbian approaches explored in this work. Our findings encourage a path of cooperation between neuroscience and computer science towards a deeper investigation of biologically inspired learning principles.
Gabriele Lagani; Fabrizio Falchi; Claudio Gennaro; Giuseppe Amato
Abstract:
We propose a semi-supervised learning strategy for deep Convolutional Neural Networks (CNNs) in which an unsupervised pre-training stage, performed using biologically inspired Hebbian learning algorithms, is followed by supervised end-to-end backprop fine-tuning. We explored two Hebbian learning rules for the unsupervised pre-training stage: soft-Winner-Takes-All (soft-WTA) and nonlinear Hebbian Principal Component Analysis (HPCA). Our approach was applied in sample efficiency scenarios, where the amount of available labeled training samples is very limited, and unsupervised pre-training is therefore beneficial. We performed experiments on CIFAR10, CIFAR100, and Tiny ImageNet datasets. Our results show that Hebbian outperforms Variational Auto-Encoder (VAE) pre-training in almost all the cases, with HPCA generally performing better than soft-WTA.
Luca Ciampi; Fabio Carrara; Giuseppe Amato; Claudio Gennaro
Abstract:
In this work, we aim to classify nodes of unstructured peer-to-peer networks with communication uncertainty, such as users of decentralized social networks. Graph Neural Networks (GNNs) are known to improve the accuracy of simpler classifiers in centralized settings by leveraging naturally occurring network links, but graph convolutional layers are challenging to implement in decentralized settings when node neighbors are not constantly available.We address this problem by employing decoupled GNNs, where base classifier predictions and errors are diffused through graphs after training. For these, we deploy pre-trained and gossip-trained base classifiers and implement peer-to-peer graph diffusion under communication uncertainty. In particular, we develop an asynchronous decentralized formulation of diffusion that converges at centralized predictions in distribution and linearly with respect to communication rates. We experiment on three real-world graphs with node features and labels and simulate peer-to-peer networks with uniformly random communication frequencies; given a portion of known labels, our decentralized graph diffusion achieves comparable accuracy to centralized GNNs with minimal communication overhead (less than 3% of what gossip training already adds).
Francesco Merola CNR-ISTI; Fabrizio Falchi; Claudio Gennaro; Marco Di Benedetto
Abstract:
Self-driving systems have recently received massive attention in both academic and industrial contexts, leading to major improvements in standard navigation scenarios typically identified as well-maintained urban routes. Critical events like road accidents or unexpected obstacles, however, require the execution of specific emergency actions that deviate from the ordinary driving behavior and are therefore harder to incorporate in the system. In this context, we propose a system that is specifically built to take control of the vehicle and perform an emergency maneuver in case of a dangerous scenario. The presented architecture is based on a deep reinforcement learning algorithm, trained in a simulated environment and using raw sensory data as input. We evaluate the system’s performance on several typical pre-accident scenario and show promising results, with the vehicle being able to consistently perform an avoidance maneuver to nullify or minimize the incoming damage.
Gabriele Lagani; Fabrizio Falchi; Claudio Gennaro; Giuseppe Amato
Abstract:
In this paper, we investigate Hebbian learning strategies applied to Convolutional Neural Network (CNN) training. We consider two unsupervised learning approaches, Hebbian Winner-Takes-All (HWTA), and Hebbian Principal Component Analysis (HPCA). The Hebbian learning rules are used to train the layers of a CNN in order to extract features that are then used for classification, without requiring backpropagation (backprop). Experimental comparisons are made with state-of-the-art unsupervised (but backprop-based) Variational Auto-Encoder (VAE) training. For completeness,we consider two supervised Hebbian learning variants (Supervised Hebbian Classifiers—SHC, and Contrastive Hebbian Learning—CHL), for training the final classification layer, which are compared to Stochastic Gradient Descent training. We also investigate hybrid learning methodologies, where some network layers are trained following the Hebbian approach, and others are trained by backprop. We tested our approaches on MNIST, CIFAR10, and CIFAR100 datasets. Our results suggest that Hebbian learning is generally suitable for training early feature extraction layers, or to retrain higher network layers in fewer training epochs than backprop. Moreover, our experiments show that Hebbian learning outperforms VAE training, with HPCA performing generally better than HWTA.
Leonardo Galteri; Lorenzo Seidenari; Pietro Bongini; Marco Bertini; Alberto Del Bimbo
Abstract:
Evaluation of generative models, in the visual domain, is often performed providing anecdotal results to the reader. In the case of image enhancement, reference images are usually available. Nonetheless, using signal based metrics often leads to counterintuitive results: highly natural crisp images may obtain worse scores than blurry ones. On the other hand, blind reference image assessment may rank images reconstructed with GANs higher than the original undistorted images. To avoid time consuming human based image assessment, semantic computer vision tasks may be exploited instead [9, 25, 33]. In this paper we advocate the use of language generation tasks to evaluate the quality of restored images. We show experimentally that image captioning, used as a downstream task, may serve as a method to score image quality. Captioning scores are better aligned with human rankings with respect to signal based metrics or no-reference image quality metrics. We show insights on how the corruption, by artifacts, of local image structure may steer image captions in the wrong direction.
Matthew Barthet; Antonios Liapis; Georgios N. Yannakakis
Abstract:
This paper proposes a paradigm shift for affective computing by viewing the affect modeling task as a reinforcement learning process. According to our proposed framework the context (environment) and the actions of an agent define the common representation that interweaves behavior and affect. To realise this framework we build on recent advances in reinforcement learning and use a modified version of the Go-Explore algorithm which has showcased supreme performance in hard exploration tasks. In this initial study, we test our framework in an arcade game by training Go-Explore agents to both play optimally and attempt to mimic human demonstrations of arousal. We vary the degree of importance between optimal play and arousal imitation and create agents that can effectively display a palette of affect and behavioral patterns. Our Go-Explore implementation not only introduces a new paradigm for affect modeling; it empowers believable AI-based game testing by providing agents that can blend and express a multitude of behavioral and affective patterns.
Theodoros Galanos; Antonios Liapis; Georgios N. Yannakakis
Abstract:
This paper introduces a novel method for generating artistic images that express particular affective states. Leveraging state-of-the-art deep learning methods for visual generation (through generative adversarial networks), semantic models from OpenAI, and the annotated dataset of the visual art encyclopedia WikiArt, our AffectGAN model is able to generate images based on specific or broad semantic prompts and intended affective outcomes. A small dataset of 32 images generated by AffectGAN is annotated by 50 participants in terms of the particular emotion they elicit, as well as their quality and novelty. Results show that for most instances the intended emotion used as a prompt for image generation matches the participants' responses. This small-scale study brings forth a new vision towards blending affective computing with computational creativity, enabling generative systems with intentionality in terms of the emotions they wish their output to elicit.
Plumerault, Antoine Université Paris-Saclay, CEA; Le Borgne, Hervé; Hudelot, Céline
Abstract:
Among the wide variety of image generative models, two models stand out: Variational Auto Encoders (VAE) and Generative Adversarial Networks (GAN). GANs can produce realistic images, but they suffer from mode collapse and do not provide simple ways to get the latent representation of an image. On the other hand, VAEs do not have these problems, but they often generate images less realistic than GANs. In this article, we explain that this lack of realism is partially due to a common underestimation of the natural image manifold dimensionality. To solve this issue we introduce a new framework that combines VAE and GAN in a novel and complementary way to produce an auto-encoding model that keeps VAEs properties while generating images of GAN-quality. We evaluate our approach both qualitatively and quantitatively on five image datasets.
Federico Vaccaro; Tiberio Uricchio; Marco Bertini; Alberto Del Bimbo
Abstract:
In this paper, we address the problem of content-based image retrieval (CBIR) by learning images representations based on the activations of a Convolutional Neural Network. We propose an end-to-end trainable network architecture that exploits a novel multi-scale local pooling based on the trainable aggregation layer NetVLAD (Arandjelovic et al in Proceedings of the IEEE conference on computer vision and pattern recognition CVPR, NetVLAD, 2016) and bags of local features obtained by splitting the activations, allowing to reduce the dimensionality of the descriptor and to increase the performance of retrieval. Training is performed using an improved triplet mining procedure that selects samples based on their difficulty to obtain an effective image representation, reducing the risk of overfitting and loss of generalization. Extensive experiments show that our approach, that can be effectively used with different CNN architectures, obtains state-of-the-art results on standard and challenging CBIR datasets.
Nguyen, Van-Khoa; Popescu, Adrian; Deshayes-Chossart, Jérôme
Abstract:
Social networks give free access to their services in exchange for the right to exploit their users’ data. Data sharing is done in an initial context which is chosen by the users. However, data are used by social networks and third parties in different contexts which are often not transparent. In order to unveil such usages, we propose an approach which focuses on the effects of data sharing in impactful real-life situations. Focus is put on visual content because of its strong influence in shaping online user profiles. The approach relies on three components: (1) a set of visual objects with associated situation impact ratings obtained by crowdsourcing, (2) a corresponding set of object detectors for mining users’ photos and (3) a ground truth dataset made of 500 visual user profiles which are manually rated per situation. These components are combined in LERVUP, a method which learns to rate visual user profiles in each situation. LERVUP exploits a new image descriptor which aggregates object ratings and object detections at user level and an attention mechanism which boosts highly-rated objects to prevent them from being overwhelmed by low-rated ones. Performance is evaluated per situation by measuring the correlation between the automatic ranking of profile ratings and a manual ground truth. Results indicate that LERVUP is effective since a strong correlation of the two rankings is obtained. A practical implementation of the approach in a mobile app which raises user awareness about shared data usage is also discussed.
Habib Slim; Eden Belouadah; Adrian Popescu; Darian Onchis
Abstract:
Incremental learning enables artificial agents to learn from sequential data. While important progress was made by exploiting deep neural networks, incremental learning remains very challenging. This is particularly the case when no memory of past data is allowed and catastrophic forgetting has a strong negative effect. We tackle class-incremental learning without memory by adapting prediction bias correction, a method which makes predictions of past and new classes more comparable. It was proposed when a memory is allowed and cannot be directly used without memory, since samples of past classes are required. We introduce a two-step learning process which allows the transfer of bias correction parameters between reference and target datasets. Bias correction is first optimized offline on reference datasets which have an associated validation memory. The obtained correction parameters are then transferred to target datasets, for which no memory is available. The second contribution is to introduce a finer modeling of bias correction by learning its parameters per incremental state instead of the usual past vs. new class modeling. The proposed dataset knowledge transfer is applicable to any incremental method which works without memory. We test its effectiveness by applying it to four existing methods. Evaluation with four target datasets and different configurations shows consistent improvement, with practically no computational and memory overhead.
Adrian Popescu; Liviu-Daniel Ştefan; Jérôme Deshayes-Chossart; Bogdan Ionescu
Abstract:
Face verification aims to distinguish between genuine and imposter pairs of faces, which include the same or dif- ferent identities, respectively. The performance reported in recent years gives the impression that the task is practically solved. Here, we revisit the problem and argue that existing evaluation datasets were built using two oversimplifying design choices. First, the usual identity selection to form imposter pairs is not challenging enough because, in practice, verification is needed to detect challenging imposters. Second, the underlying demographics of existing datasets are often insufficient to account for the wide diversity of facial characteristics of people from across the world. To mitigate these limitations, we introduce the F aV CI2D dataset. Imposter pairs are challenging because they include visually similar faces selected from a large pool of demographically diversified identities. The dataset also includes metadata related to gender, country and age to facilitate fine-grained analysis of results. F aV CI2D is generated from freely distributable resources. Experiments with state-of-the-art deep models that provide nearly 100% performance on existing datasets show a significant performance drop for FaVCI2D, confirming our starting hypothesis. Equally important, we analyze legal and ethical challenges which appeared in recent years and hindered the development of face analysis research. We intro- duce a series of design choices which address these challenges and make the dataset constitution and usage more sustainable and fairer.
R.S. Kiziltepe; M.G. Constantin; C.H. Demarty; G. Healy; C. Fosco; A.G.S. de Herrera; S. Halder; B. Ionescu; A. Matran-Fernandez; A.F. Smeaton; L. Sweeney
Abstract:
This paper describes the MediaEval 2021 Predicting Media Memorability task, which is in its 4th edition this year, as the prediction of short-term and long-term video memorability remains a challenging task. In 2021, two datasets of videos are used: first, a subset of the TRECVid 2019 Video-to-Text dataset; second, the Memento10K dataset in order to provide opportunities to explore cross-dataset generalisation. In addition, an Electroencephalography (EEG)-based prediction pilot subtask is introduced. In this paper, we outline the main aspects of the task and describe the datasets, evaluation metrics, and requirements for participants’ submissions.
M.G. Constantin University Politehnica of Bucharest, Romania; B. Ionescu
Abstract:
This paper describes the approach taken by the AI Multimedia Lab team for the MediaEval 2021 Predicting Media Memorability task. Our approach is based on a Vision Transformer-based learning method, which is optimized by filtering the training sets for the two proposed datasets.We attempt to train the methods we propose with video segments that are more representative for the videos they are part of. We test several types of filtering architectures, and submit and test the architectures that best performed in our preliminary studies.
Alberto Baldrati; Marco Bertini; Tiberio Uricchio; Alberto Del Bimbo
Abstract:
Building on the recent advances in multimodal zero-shot represen- tation learning, in this paper we explore the use of features obtained from the recent CLIP model to perform conditioned image retrieval. Starting from a reference image and an additive textual description of what the user wants with respect to the reference image, we learn a Combiner network that is able to understand the image content, integrate the textual description and provide combined feature used to perform the conditioned image retrieval. Starting from the bare CLIP features and a simple baseline, we show that a carefully crafted Combiner network, based on such multimodal features, is extremely effective and outperforms more complex state of the art approaches on the popular FashionIQ dataset.
Chintan Trivedi; Antonios Liapis; Georgios N. Yannakakis;
Abstract:
Representing games through their pixels offers a promising approach for building general-purpose and versatile game models. While games are not merely images, neural network models trained on game pixels often capture differences of the visual style of the image rather than the content of the game. As a result, such models cannot generalize well even within similar games of the same genre. In this paper we build on recent advances in contrastive learning and showcase its benefits for representation learning in games. Learning to contrast images of games not only classifies games in a more efficient manner; it also yields models that separate games in a more meaningful fashion by ignoring the visual style and focusing, instead, on their content. Our results in a large dataset of sports video games containing 100k images across 175 games and 10 game genres suggest that contrastive learning is better suited for learning generalized game representations compared to conventional supervised learning. The findings of this study bring us closer to universal visual encoders for games that can be reused across previously unseen games without requiring retraining or fine-tuning.
David Melhart University of Malta; Antonios Liapis; Georgios N. Yannakakis
Abstract:
To which degree can abstract gameplay metrics capture the player experience in a general fashion within a game genre? In this comprehensive study we address this question across three different videogame genres: racing, shooter, and platformer games. Using high-level gameplay features that feed preference learning models we are able to predict arousal accurately across different games of the same genre in a large-scale dataset of over 1,000 arousal-annotated play sessions. Our genre models predict changes in arousal with up to 74% accuracy on average across all genres and 86% in the best cases. We also examine the feature importance during the modelling process and find that time-related features largely contribute to the performance of both game and genre models. The prominence of these game-agnostic features show the importance of the temporal dynamics of the play experience in modelling, but also highlight some of the challenges for the future of general affect modelling in games and beyond.
Esuli, Andrea ISTI-CNR; Moreo, Alejandro; Sebastiani, Fabrizio
Abstract:
The aim of LeQua 2022 (the 1st edition of the CLEF “Learning to Quantify” lab) is to allow the comparative evaluation of methods for “learning to quantify” in textual datasets, i.e., methods for training predictors of the relative frequencies of the classes of interest in sets of unlabelled textual documents. These predictors (called “quantifiers”) will be required to issue predictions for several such sets, some of them characterized by class frequencies radically different from the ones of the training set.
Mihai Dogariu; Liviu-Daniel Ştefan; Bogdan Andrei Boteanu; Claudiu Lamba; Bomi Kim; Bogdan Ionescu
Abstract:
Financial markets have always been a point of interest for automated systems. Due to their complex nature, financial algorithms and fintech frameworks require vast amounts of data to accurately respond to market fluctuations. This data availability is tied to the daily market evolution so it is impossible to accelerate its acquisition. In this paper, we discuss several solutions for augmenting financial datasets via synthesizing realistic time-series with the help of generative models. This problem is complex since financial time series present very specific properties, e.g., fat-tail distribution, cross-correlation between different stocks, specific autocorrelation, cluster volatility etc. In particular, we propose solutions for capturing cross-correlations between different stocks and for transitioning from fixed to variable length time-series without resorting to sequence modeling networks, and adapt various network architectures, e.g., fully connected and convolutional GANs, variational autoencoders, and generative moment matching networks. Finally, we tackle the problem of evaluating the quality of synthetic financial time-series. We introduce qualitative and quantitative metrics, along with a portfolio trend prediction framework which validates our generative models’ performance. We carry out experiments on real-world financial data extracted from the US stock market proving the benefits of these techniques.
George Voulgaris; Ioannis Mademlis; Ioannis Pitas
Abstract:
Synthetic terrain realism is critical in VR applications based on computer graphics (e.g., games, simulations). Although fast procedural algorithms for automated terrain generation do exist, they still require human effort. This paper proposes a novel approach to procedural terrain generation, relying on Generative Adversarial Networks (GANs). The neural model is trained using terrestrial Points-of-Interest (PoIs, described by their geodesic coordinates/altitude) and publicly available corresponding satellite images. After training is complete, the GAN can be employed for deriving realistic terrain images on-the- fly, by merely forwarding through it a rough 2D scatter plot of desired PoIs in image form (so-called “altitude image”). We demonstrate that such a GAN is able to translate this rough, quickly produced sketch into an actual photorealistic terrain image. Additionally, we describe a strategy for enhancing the visual diversity of trained model synthetic output images, by tweaking input altitude image orientation during GAN training. Finally, we perform an objective and a subjective evaluation of the proposed method. Results validate the latter’s ability to rapidly create life-like terrain images from minimal input data.
Oldfield, James; Georgopoulos Markos; Panagakis Yannis; Nicolaou Mihalis A; Patras Ioannis
Abstract:
This paper addresses the problem of finding interpretable directions in the latent space of pre-trained Generative Adversarial Networks (GANs) to facilitate controllable image synthesis. Such interpretable directions correspond to transformations that can affect both the style and geometry of the synthetic images. However, existing approaches that utilise linear techniques to find these transformations often fail to provide an intuitive way to separate these two sources of variation. To address this, we propose to a) perform a multilinear decomposition of the tensor of intermediate representations, and b) use a tensor-based regression to map directions found using this decomposition to the latent space. Our scheme allows for both linear edits corresponding to the individual modes of the tensor, and non-linear ones that model the multiplicative interactions between them. We show experimentally that we can utilise the former to better separate style- from geometry-based transformations, and the latter to generate an extended set of possible transformations in comparison to prior works. We demonstrate our approach’s efficacy both quantitatively and qualitatively compared to the current state-of-the-art.
Miguel Fabian; Dario; Stefano; Marco; Lucile
Abstract:
Immersive environments such as Virtual Reality (VR) are now a main area of interactive digital entertainment. The challenge to design personalized interactive VR systems is specifically to guide and adapt to the user’s attention. Understanding the connection between the visual content and the human attentional process is therefore key. In this article, we investigate this connection by first proposing a new head motion predictor named HeMoG. HeMoG is a white-box model built on physics of rotational motion and gravitation. Second, we compare HeMoG with existing reference Deep Learning models. We show that HeMoG can achieve similar or better performance and provides insights on the inner workings of these black-box models. Third, we study HeMoG parameters in terms of video categories and prediction horizons to gain knowledge on the connection between visual saliency and the head motion process.
Sina Sajadmanesh; Daniel Gatica-Perez
Abstract:
Graph Neural Networks (GNNs) have demonstrated superior performance in learning node representations for various graph inference tasks. However, learning over graph data can raise privacy concerns when nodes represent people or human-related variables that involve sensitive or personal information. While numerous techniques have been proposed for privacy-preserving deep learning over non-relational data, there is less work addressing the privacy issues pertained to applying deep learning algorithms on graphs. In this paper, we study the problem of node data privacy, where graph nodes have potentially sensitive data that is kept private, but they could be beneficial for a central server for training a GNN over the graph. To address this problem, we develop a privacy-preserving, architecture-agnostic GNN learning algorithm with formal privacy guarantees based on Local Differential Privacy (LDP). Specifically, we propose an LDP encoder and an unbiased rectifier, by which the server can communicate with the graph nodes to privately collect their data and approximate the GNN's first layer. To further reduce the effect of the injected noise, we propose to prepend a simple graph convolution layer, called KProp, which is based on the multi-hop aggregation of the nodes' features acting as a denoising mechanism. Finally, we propose a robust training framework, in which we benefit from KProp's denoising capability to increase the accuracy of inference in the presence of noisy labels. Extensive experiments conducted over real-world datasets demonstrate that our method can maintain a satisfying level of accuracy with low privacy loss.
Apostolidis, Evlampios CERTH & QMUL ; Adamantidou, Eleni; Metsai, Alexandros; Mezaris, Vasileios; Patras, Ioannis
Abstract:
Video summarization technologies aim to create a concise and complete synopsis by selecting the most informative parts of the video content. Several approaches have been developed over the last couple of decades, and the current state of the art is represented by methods that rely on modern deep neural network architectures. This work focuses on the recent advances in the area and provides a comprehensive survey of the existing deep-learning-based methods for generic video summarization. After presenting the motivation behind the development of technologies for video summarization, we formulate the video summarization task and discuss the main characteristics of a typical deep-learning-based analysis pipeline. Then, we suggest a taxonomy of the existing algorithms and provide a systematic review of the relevant literature that shows the evolution of the deep-learning-based video summarization technologies and leads to suggestions for future developments. We then report on protocols for the objective evaluation of video summarization algorithms, and we compare the performance of several deep-learning-based approaches. Based on the outcomes of these comparisons, as well as some documented considerations about the amount of annotated data and the suitability of evaluation protocols, we indicate potential future research directions.
Moreo, Alejandro; Esuli, Andrea; Sebastiani, Fabrizio
Abstract:
QuaPy is an open source framework for Quantification (a.k.a. Supervised Prevalence Estimation) written in Python. QuaPy roots on the concept of data sample, and provides implementations of most important concepts in quantification literature, such as the most important quantification baselines, many advanced quantification methods, quantification-oriented model selection, many evaluation measures and protocols used for evaluating quantification methods. QuaPy also integrates commonly used datasets and offers visualization tools for facilitating the analysis and interpretation of results.
Nicola Messina; Giuseppe Amato; Andrea Esuli; Fabrizio Falchi; Claudio Gennaro; Stéphane Marchand-Maillet
Abstract:
Despite the evolution of deep-learning-based visual-textual processing systems, precise multi-modal matching remains a challenging task. In this work, we tackle the task of cross-modal retrieval through image-sentence matching based on word-region alignments, using supervision only at the global image-sentence level. Specifically, we present a novel approach called Transformer Encoder Reasoning and Alignment Network (TERAN). TERAN enforces a fine-grained match between the underlying components of images and sentences (i.e., image regions and words, respectively) to preserve the informative richness of both modalities. TERAN obtains state-of-the-art results on the image retrieval task on both MS-COCO and Flickr30k datasets. Moreover, on MS-COCO, it also outperforms current approaches on the sentence retrieval task. Focusing on scalable cross-modal information retrieval, TERAN is designed to keep the visual and textual data pipelines well separated. Cross-attention links invalidate any chance to separately extract visual and textual features needed for the online search and the offline indexing steps in large-scale retrieval systems. In this respect, TERAN merges the information from the two domains only during the final alignment phase, immediately before the loss computation. We argue that the fine-grained alignments produced by TERAN pave the way toward the research for effective and efficient methods for large-scale cross-modal information retrieval. We compare the effectiveness of our approach against relevant state-of-the-art methods. On the MS-COCO 1K test set, we obtain an improvement of 5.7% and 3.5% respectively on the image and the sentence retrieval tasks on the Recall@1 metric. The code used for the experiments is publicly available on GitHub at https://github.com/mesnico/TERAN.
Juan José del Coz; Pablo González; Alejandro Moreo; Fabrizio Sebastiani
Abstract:
Learning to Quantify (LQ) is the task of training class prevalence estimators via supervised learning. The task of these estimators is to estimate, given an unlabelled set of data items D and a set of classes C = {c1, . . . , c|C|}, the prevalence (i.e., relative frequency) of each class ci in D. LQ is interesting in all applications of classification in which the final goal is not determining which class (or classes) individual unlabelled data items belong to, but estimating the distribution of the unlabelled data items across the classes of interest. Example disciplines whose interest in labelling data items is at the aggregate level (rather than at the individual level) are the social sciences, political science, market research, ecological modelling, and epidemiology. While LQ may in principle be solved by classifying each data item in D and counting how many such items have been labelled with ci, it has been shown that this “classify and count” (CC) method yields suboptimal quantification accuracy. As a result, quantification is now no longer considered a mere byproduct of classification and has evolved as a task of its own. The goal of this workshop is bringing together all researchers interested in methods, algorithms, and evaluation measures and methodologies for LQ, as well as practitioners interested in their practical application to managing large quantities of data.
Yue Song; Niculae Sebe; Wei Wang;
Abstract:
Global Covariance Pooling (GCP) aims at exploiting the second-order statistics of the convolutional feature. Its effectiveness has been demonstrated in boosting the classification performance of Convolutional Neural Networks (CNNs). Singular Value Decomposition (SVD) is used in GCP to compute the matrix square root. However, the approximate matrix square root calculated using Newton- Schulz iteration [14] outperforms the accurate one computed via SVD [15]. We empirically analyze the reason behind the performance gap from the perspectives of data precision and gradient smoothness. Various remedies for computing smooth SVD gradients are investigated. Based on our observation and analyses, a hybrid training protocol is proposed for SVD-based GCP meta-layers such that competitive performances can be achieved against Newton-Schulz iteration. Moreover, we propose a new GCP metalayer that uses SVD in the forward pass, and Pad´e approximants in the backward propagation to compute the gradients. The proposed meta-layer has been integrated into different CNN models and achieves state-of-the-art performances on both large-scale and fine-grained datasets.
Haoyu Chen; Hao Tang; Henglin Shi; Wei Peng; Niculae Sebe; Guoying Zhao
Abstract:
With the strength of deep generative models, 3D pose transfer regains intensive research interests in recent years. Existing methods mainly rely on a variety of constraints to achieve the pose transfer over 3D meshes, e.g., the need for manually encoding for shape and pose disentanglement. In this paper, we present an unsupervised approach to conduct the pose transfer between any arbitrate given 3D meshes. Specifically, a novel Intrinsic-Extrinsic Preserved Generative Adversarial Network (IEP-GAN) is presented for both intrinsic (i.e., shape) and extrinsic (i.e., pose) information preservation. Extrinsically, we propose a cooccurrence discriminator to capture the structural/pose invariance from distinct Laplacians of the mesh. Meanwhile, intrinsically, a local intrinsic-preserved loss is introduced to preserve the geodesic priors while avoiding heavy computations. At last, we show the possibility of using IEP-GAN to manipulate 3D human meshes in various ways, including pose transfer, identity swapping and pose interpolation with latent code vector arithmetic. The extensive experiments on various 3D datasets of humans, animals and hands qualitatively and quantitatively demonstrate the generality of our approach. Our proposed model produces better results and is substantially more efficient compared to recent state-ofthe- art methods. Code is available: https://github. com/mikecheninoulu/Unsupervised_IEPGAN
Guanglei Yang; Hao Tang; Mingli Ding; Niculae Sebe; Elisa Ricci
Abstract:
While convolutional neural networks have shown a tremendous impact on various computer vision tasks, they generally demonstrate limitations in explicitly modeling long-range dependencies due to the intrinsic locality of the convolution operation. Initially designed for natural language processing tasks, Transformers have emerged as alternative architectures with innate global self-attention mechanisms to capture long-range dependencies. In this paper, we propose TransDepth, an architecture that benefits from both convolutional neural networks and transformers. To avoid the network losing its ability to capture locallevel details due to the adoption of transformers, we propose a novel decoder that employs attention mechanisms based on gates. Notably, this is the first paper that applies transformers to pixel-wise prediction problems involving continuous labels (i.e., monocular depth prediction and surface normal estimation). Extensive experiments demonstrate that the proposed TransDepth achieves state-of-theart performance on three challenging datasets. Our code is available at: https://github.com/ygjwd12345/ TransDepth.
Chen, Haoyou; Tang, Hao; Sebe, Nicu; Zhao, Guoying
Abstract:
We present a novel task, i.e., animating a target 3D object through the motion of a raw driving sequence. In previous works, extra auxiliary correlations between source and target meshes or intermedia factors are inevitable to capture the motions in the driving sequences. Instead, we introduce AniFormer, a novel Transformer-based architecture, that generates animated 3D sequences by directly taking the raw driving sequences and arbitrary same-type target meshes as inputs. Specifically, we customize the Transformer architecture for 3D animation that generates mesh sequences by integrating styles from target meshes and motions from the driving meshes. Besides, instead of the conventional single regression head in the vanilla Transformer, AniFormer generates multiple frames as outputs to preserve the sequential consistency of the generated meshes. To achieve this, we carefully design a pair of regression constraints, i.e., motion and appearance constraints, that can provide strong regularization on the generated mesh sequences. Our AniFormer achieves high-fidelity, realistic, temporally coherent animated results and outperforms compared start-of-the-art methods on benchmarks of diverse categories. Code is available: https://github.com/mikecheninoulu/AniFormer.
Ren, Bin; Tang, Hao; Sebe, Nicu
Abstract:
It is hard to generate an image at target view well for previous cross-view image translation methods that directly adopt a simple encoder-decoder or U-Net structure, especially for drastically different views and severe deformation cases. To ease this problem, we propose a novel two-stage framework with a new Cascaded Cross MLPMixer (CrossMLP) sub-network in the first stage and one refined pixel-level loss in the second stage. In the first stage, the CrossMLP sub-network learns the latent transformation cues between image code and semantic map code via our novel CrossMLP blocks. Then the coarse results are generated progressively under the guidance of those cues. Moreover, in the second stage, we design a refined pixel-level loss that eases the noisy semantic label problem with more reasonable regularization in a more compact fashion for better optimization. Extensive experimental results on Dayton [40] and CVUSA [42] datasets show that our method can generate significantly better results than state-of-the-art methods. The source code and trained models are available at https://github.com/Amazingren/CrossMLP.
Hannes Fassold
Abstract:
We present a novel method for detecting speaking persons in video, by extracting facial landmarks with a neural network and analysing these landmarks statistically over time.
Fassold, Hannes
Abstract:
In this work, we propose to progressively increase the training difficulty during learning a neural network model via a novel strategy which we call mini-batch trimming. This strategy makes sure that the optimizer puts its focus in the later training stages on the more difficult samples, which we identify as the ones with the highest loss in the current mini-batch. The strategy is very easy to integrate into an existing training pipeline and does not necessitate a change of the network model. Experiments on several image classification problems show that mini-batch trimming is able to increase the generalization ability (measured via final test error) of the trained model.
Lucia Vadicamo ISTI-CNR; Claudio Gennaro; Giuseppe Amato
Abstract:
In the domain of approximate metric search, the Permutation-based Indexing (PBI) approaches have been proved to be particularly suitable for dealing with large data collections. These methods employ a permutation-based representation of the data, which can be efficiently indexed using data structures such as inverted files. In the literature, the definition of the permutation of a metric object was derived by reordering the distances of the object to a set of pivots. In this paper, we aim at generalizing this definition in order to enlarge the class of permutations that can be used by PBI approaches. As a practical outcome, we defined a new type of permutation that is calculated using distances from pairs of pivots. The proposed technique permits us to produce longer permutations than traditional ones for the same number of object-pivot distance calculations. The advantage is that the use of inverted files built on permutation prefixes leads to greater efficiency in the search phase when longer permutations are used.
Francesco Bongini; Lorenzo Berlincioni; Marco Bertini; Alberto Del Bimbo
Abstract:
In this paper we propose a novel data augmentation approach for visual content domains that have scarce training datasets, composit- ing synthetic 3D objects within real scenes. We show the perfor- mance of the proposed system in the context of object detection in thermal videos, a domain where i) training datasets are very limited compared to visible spectrum datasets and ii) creating full realistic synthetic scenes is extremely cumbersome and expensive due to the difficulty in modeling the thermal properties of the materials of the scene. We compare different augmentation strategies, including state of the art approaches obtained through RL techniques, the injection of simulated data and the employment of a generative model, and study how to best combine our proposed augmentation with these other techniques.
Christos Tzelepis; Georgios Tzimiropoulos; Ioannis Patras
Abstract:
This work addresses the problem of discovering, in an unsupervised manner, interpretable paths in the latent space of pretrained GANs, so as to provide an intuitive and easy way of controlling the underlying generative factors. In doing so, it addresses some of the limitations of the state-of-the-art works, namely, a) that they discover directions that are independent of the latent code, i.e., paths that are linear, and b) that their evaluation relies either on visual inspection or on laborious human labeling. More specifically, we propose to learn non-linear warpings on the latent space, each one parametrized by a set of RBF-based latent space warping functions, and where each warping gives rise to a family of non-linear paths via the gradient of the function. Building on the work of Voynov and Babenko, that discovers linear paths, we optimize the trainable parameters of the set of RBFs, so as that images that are generated by codes along different paths, are easily distinguishable by a discriminator network. This leads to easily distinguishable image transformations, such as pose and facial expressions in facial images. We show that linear paths can be derived as a special case of our method, and show experimentally that non-linear paths in the latent space lead to steeper, more disentangled and interpretable changes in the image space than in state-of-the art methods, both qualitatively and quantitatively. We make the code and the pretrained models publicly available at: https://github.com/chi0tzp/WarpedGANSpace.
Foteinopoulou, Niki Maria; Tzelepis, Christos; Patras, Ioannis
Abstract:
Continuous affect estimation is a problem where there is an inherent uncertainty and subjectivity in the labels that accompany data samples -- typically, datasets use the average of multiple annotations or self-reporting to obtain ground truth labels. In this work, we propose a method for uncertainty-aware continuous affect estimation, that models explicitly the uncertainty of the ground truth label as a uni-variate Gaussian with mean equal to the ground truth label, and unknown variance. For each sample, the proposed neural network estimates not only the value of the target label (valence and arousal in our case), but also the variance. The network is trained with a loss that is defined as the KL-divergence between the estimation (valence/arousal) and the Gaussian around the ground truth. We show that, in two affect recognition problems with real data, the estimated variances are correlated with measures of uncertainty/error in the labels that are extracted by considering multiple annotations of the data.
Sotirios Papadopoulos Aristotle University of Thessaloniki; Charalampos Symeonidis; Ioannis Pitas
Abstract:
This paper addresses the important problem of leader detection in racing sports videos (e.g., cycling, boating and car racing events), as his/her proper framing is a pivotal issue in racing sports cinematography, where the events have a linear spatial deployment. Over the last few years, as autonomous drone vision and cinematography emerged, new challenges appeared in drone vision. While, until recently, most computer vision methods typically addressed still camera AV footage, drone sports cinematography typically employs moving cameras. In this paper, we solve the problem of leader detection in a group of similarly moving targets in sports videos, e.g. the leader of a sports cyclist group and his/her breakaway during a cycling event. This is very useful in drone sports cinematography, as it is important that the drone camera automatically centers on such a leader. We demonstrate that the novel method described in this paper can effectively solve the problem of leader detection in sports videos.
Federico Vaccaro; Marco Bertini; Tiberio Uricchio; Alberto Del Bimbo
Abstract:
In this paper, we address the problem of real-time video quality enhancement, considering both frame super-resolution and com- pression artifact-removal. The first operation increases the sam- pling resolution of video frames, the second removes visual artifacts such as blurriness, noise, aliasing, or blockiness introduced by lossy compression techniques, such as JPEG encoding for single-images, or H.264/H.265 for video data. We propose to use SR-UNet, a novel network architecture based on UNet, that has been specialized for fast visual quality improve- ment (i.e. capable of operating in less than 40ms, to be able to operate on videos at 25FPS). We show how this network can be used in a streaming context where the content is generated live, e.g. in video calls, and how it can be optimized when video to be streamed are prepared in advance. The network can be used as a final post processing, to optimize the visual appearance of a frame before showing it to the end-user in a video player. Thus, it can be applied without any change to existing video coding and transmission pipelines.
Kaseris, Michail; Mademlis, Ioannis; Pitas, Ioannis
Abstract:
Automated unsupervised video summarization by key-frame extraction consists in identifying representative video frames, best abridging a complete input sequence, and temporally ordering them to form a video summary, without relying on manually constructed ground-truth key-frame sets. State-of-the-art unsupervised deep neural approaches consider the desired summary to be a subset of the original sequence, composed of video frames that are sufficient to visually reconstruct the entire input. They typically employ a pre-trained CNN for extracting a vector representation per RGB video frame and a baseline LSTM adversarial learning framework for identifying key-frames. In this paper, to better guide the network towards properly selecting video frames that can faithfully reconstruct the original video, we augment the baseline framework with an additional LSTM autoencoder, which learns in parallel a fixed-length representation of the entire original input sequence. This is exploited during training, where a novel loss term inspired by dictionary learning is added to the network optimization objectives, further biasing key-frame selection towards video frames which are collectively able to recreate the original video. Empirical evaluation on two common public relevant datasets indicates highly favourable results.
Tang, Hao; Sebe, Nicu
Abstract:
In this paper, we address the task of layout-to-image translation, which aims to translate an input semantic layout to a realistic image. One open challenge widely observed in existing methods is the lack of effective semantic constraints during the image translation process, leading to models that cannot preserve the semantic information and ignore the semantic dependencies within the same object. To address this issue, we propose a novel Double Pooing GAN (DPGAN) for generating photo-realistic and semantically-consistent results from the input layout. We also propose a novel Double Pooling Module (DPM), which consists of the Square-shape Pooling Module (SPM) and the Rectangle-shape Pooling Module (RPM). Specifically, SPM aims to capture short range semantic dependencies of the input layout with different spatial scales, while RPM aims to capture long-range semantic dependencies from both horizontal and vertical directions. We then effectively fuse both outputs of SPM and RPM to further enlarge the receptive field of our generator. Extensive experiments on five popular datasets show that the proposed DPGAN achieves better results than state-of-the-art methods. Finally, both SPM and SPM are general and can be seamlessly integrated into any GAN-based architectures to strengthen the feature representation. The code is available at https://github.com/Ha0Tang/DPGAN.
Mazziotti Raffaele; Carrara Fabio; Viglione Aurelia; Lupori Leonardo; Lo Verde Luca; Benedetto Alessandro; Ricci Giulia; Sagona Giulia; Amato Giuseppe; Pizzorusso Tommaso
Abstract:
Pupil dynamics alterations have been found in patients affected by a variety of neuropsychiatric conditions, including autism. Studies in mouse models have used pupillometry for phenotypic assessment and as a proxy for arousal. Both in mice and humans, pupillometry is non-invasive and allows for longitudinal experiments supporting temporal specificity, however, its measure requires dedicated setups. Here, we introduce a Convolutional Neural Network that performs online pupillometry in both mice and humans in a web app format. This solution dramatically simplifies the usage of the tool for the non-specialist and non-technical operators. Because a modern web browser is the only software requirement, this choice is of great interest given its easy deployment and set-up time reduction. The tested model performances indicate that the tool is sensitive enough to detect both locomotor-induced and stimulus-evoked pupillary changes, and its output is comparable with state-of-the-art commercial devices.
Xiao Bai; Xiang Wang; Xianglong Liu; Qiang Liu; Jingkuan Song; Niculae Sebe; Been Kim
Abstract:
Deep learning has recently achieved great success in many visual recognition tasks. However, the deep neural networks (DNNs) are often perceived as black-boxes, making their decision less understandable to humans and prohibiting their usage in safety-critical applications. This guest editorial introduces the thirty papers accepted for the Special Issue on Explainable Deep Learning for Efficient and Robust Pat- tern Recognition. They are grouped into three main categories: explainable deep learning methods, effi- cient deep learning via model compression and acceleration, as well as robustness and stability in deep learning. For each of the three topics, a survey of the representative works and latest developments is presented, followed by the brief introduction of the accepted papers belonging to this topic. The special issue should be of high relevance to the reader interested in explainable deep learning methods for ef- ficient and robust pattern recognition applications and it helps promoting the future research directions in this field.
Ozerov Alexey; Ngoc Q. K. Duong
Abstract:
Deep neural networks (DNNs) have achieved great success in various machine learning tasks. However, most existing powerful DNN models are computationally expensive and memory demanding, hindering their deployment in devices with low memory and computational resources or in applications with strict latency requirements. Thus, several resource-adaptable or flexible approaches were recently proposed that train at the same time a big model and several resource-specific sub-models. Inplace knowledge distillation (IPKD) became a popular method to train those models and consists in distilling the knowledge from a larger model (teacher) to all other sub-models (students). In this work a novel generic training method called IPKD with teacher assistant (IPKD-TA) is introduced, where sub-models themselves become teacher assistants teaching smaller sub-models. We evaluated the proposed IPKD-TA training method using two state-of-the-art flexible models (MSDNet and Slimmable MobileNet-V1) with two popular image classification benchmarks (CIFAR-10 and CIFAR-100). Our results demonstrate that the IPKD-TA is on par with the existing state of the art while improving it in most cases.
Lagani Gabriele; Falchi Fabrizio; Gennaro Claudio; Amato Giuseppe
Abstract:
We propose to address the issue of sample efficiency, in Deep Convolutional Neural Networks (DCNN), with a semi-supervised training strategy that combines Hebbian learning with gradient descent: all internal layers (both convolutional and fully connected) are pre-trained using an unsupervised approach based on Hebbian learning, and the last fully connected layer (the classification layer) is trained using Stochastic Gradient Descent (SGD). In fact, as Hebbian learning is an unsupervised learning method, its potential lies in the possibility of training the internal layers of a DCNN without labels. Only the final fully connected layer has to be trained with labeled examples. We performed experiments on various object recognition datasets, in different regimes of sample efficiency, comparing our semi-supervised (Hebbian for internal layers + SGD for the final fully connected layer) approach with end-to-end supervised backprop training, and with semi-supervised learning based on Variational Auto-Encoder (VAE). The results show that, in regimes where the number of available labeled samples is low, our semi-supervised approach outperforms the other approaches in almost all the cases.
Messina Nicola; Falchi Fabrizio; Gennaro Claudio; Amato Giuseppe
Abstract:
This paper describes the system used by the AIMH Team to approach the SemEval Task 6. We propose an approach that relies on an architecture based on the transformer model to process multimodal content (text and images) in memes. Our architecture, called DVTT (Double Visual Textual Transformer), approaches Subtasks 1 and 3 of Task 6 as multi-label classification problems, where the text and/or images of the meme are processed, and the probabilities of the presence of each possible persuasion technique are returned as a result. DVTT uses two complete networks of transformers that work on text and images that are mutually conditioned. One of the two modalities acts as the main one and the second one intervenes to enrich the first one, thus obtaining two distinct ways of operation. The two transformers outputs are merged by averaging the inferred probabilities for each possible label, and the overall network is trained end-to-end with a binary cross-entropy loss.
Petru Soviany; Radu Tudor Ionescu; Paolo Rota; Niculae Sebe
Abstract:
Training (source) domain bias affects state-of-the-art object detectors, such as Faster R-CNN, when applied to new (target) domains. To alleviate this problem, researchers proposed various domain adaptation methods to improve object detection results in the cross-domain setting, e.g. by translating images with ground-truth labels from the source domain to the target domain using Cycle-GAN. On top of combining Cycle-GAN transformations and self-paced learning in a smart and efficient way, in this paper, we propose a novel self-paced algorithm that learns from easy to hard. Our method is simple and effective, without any overhead during inference. It uses only pseudo-labels for samples taken from the target domain, i.e. the domain adaptation is unsupervised. We conduct experiments on four cross-domain benchmarks, showing better results than the state of the art. We also perform an ablation study demonstrating the utility of each component in our framework. Additionally, we study the applicability of our framework to other object detectors. Furthermore, we compare our difficulty measure with other measures from the related literature, proving that it yields superior results and that it correlates well with the performance metric.
M.G. Constantin; L.D. Stefan; B. Ionescu
Abstract:
In the context of the ever growing quantity of multimedia content from social, news and educational platforms, generating meaningful recommendations and ratings now requires a more advanced understanding of their impact on the user, such as their subjective perception. One of the important subjective concepts explored by researchers is visual interestingness. While several definitions of this concept are given in the current literature, in a broader sense, this property attempts to measure the ability of audio-visual data to capture and keep the viewer’s attention for longer periods of time. While many computer vision and machine learning methods have been tested for predicting media interestingness, overall, due to the heavily subjective nature of interestingness, the precision of the results is relatively low. In this chapter, we investigate several methods that address this problem from a different angle. We first review the literature on interestingness prediction and present an overview of the traditional fusion mechanisms, such as statistical fusion, weighted approaches, boosting, random forests or randomized trees. Further, we explore the possibility of employing a stronger, novel deep learning-based, system fusion for enhancing the performance. We investigate several types of deep networks for creating the fusion systems, including dense, attention, convolutional and cross-space-fusion networks, while also proposing some input decoration methods that help these networks achieve optimal performance.We present the results, as well as an analysis of the correlation between network structure and overall system performance. Experimental validation is carried out on a publicly available data set and on the systems benchmarked during the 2017 MediaEval Predicting Media Interestingness task.
Alexandr Ermolov; Aliaksandr Siarohin; Enver Sangineto; Niculae Sebe
Abstract:
Most of the current self-supervised representation learning (SSL) methods are based on the contrastive loss and the instance-discrimination task, where augmented versions of the same image instance (“positives”) are contrasted with instances extracted from other images (“negatives”). For the learning to be effective, many negatives should be compared with a positive pair, which is computationally demanding. In this paper, we propose a different direction and a new loss function for SSL, which is based on the whitening of the latentspace features. The whitening operation has a “scattering” effect on the batch samples, avoiding degenerate solutions where all the sample representations collapse to a single point. Our solution does not require asymmetric networks and it is conceptually simple. Moreover, since negatives are not needed, we can extract multiple positive pairs from the same image instance. The source code of the method and of all the experiments is available at: https://github.com/htdt/ self-supervised.
Sfikas, Konstantinos; Liapis, Antonios; Yannakakis, Georgios N.
Abstract:
A core challenge of evolutionary search is the need to balance between exploration of the search space and exploitation of highly fit regions. Quality-diversity search has explicitly walked this tightrope between a population's diversity and its quality. This paper extends a popular quality-diversity search algorithm, MAP-Elites, by treating the selection of parents as a multi-armed bandit problem. Using variations of the upper-confidence bound to select parents from under-explored but potentially rewarding areas of the search space can accelerate the discovery of new regions as well as improve its archive's total quality. The paper tests an indirect measure of quality for parent selection: the survival rate of a parent's offspring. Results show that maintaining a balance between exploration and exploitation leads to the most diverse and high-quality set of solutions in three different testbeds.
Giuseppe Amato; Paolo Bolettieri; Fabrizio Falchi; Claudio Gennaro; Nicola Messina; Lucia Vadicamo; Claudio Vairo
Abstract:
This paper presents the second release of VISIONE, a tool for effective video search on large-scale collections. It allows users to search for videos using textual descriptions, keywords, occurrence of objects and their spatial relationships, occurrence of colors and their spatial re- lationships, and image similarity. One of the main features of our system is that it employs specially designed textual encodings for indexing and searching video content using the mature and scalable Apache Lucene full-text search engine.
Giuseppe Amato; Paolo Bolettieri; Fabio Carrara; Franca Debole; Fabrizio Falchi; Claudio Gennaro; Lucia Vadicamo; Claudio Vairo
Abstract:
This paper describes in detail VISIONE, a video search system that allows users to search for videos using textual keywords, the occurrence of objects and their spatial relationships, the occurrence of colors and their spatial relationships, and image similarity. These modalities can be combined together to express complex queries and meet users’ needs. The peculiarity of our approach is that we encode all information extracted from the keyframes, such as visual deep features, tags, color and object locations, using a convenient textual encoding that is indexed in a single text retrieval engine. This offers great flexibility when results corresponding to various parts of the query (visual, text and locations) need to be merged. In addition, we report an extensive analysis of the retrieval performance of the system, using the query logs generated during the Video Browser Showdown (VBS) 2019 competition. This allowed us to fine-tune the system by choosing the optimal parameters and strategies from those we tested.
Georgios Zoumpourlis; Ioannis Patras
Abstract:
In this work we study the problem of emotion recognition under the prism of preference learning. Affective datasets are typically annotated by assigning a single absolute label, i.e. a numerical value that describes the intensity of an emotional attribute, to each sample. Then, the majority of existing works on affect recognition employ sample-wise classification/regression methods to predict affective states, using those annotations. We take a different approach and use a deep network architecture that performs joint training on the tasks of classification/regression of samples and ordinal ranking between pairs of samples. By treating input samples in a pairwise manner, we leverage the auxiliary task of inferring the ordinal relation between their corresponding affective states. Incorporating the ranking objective allows capturing the inherently ordinal structure of emotions and learning the inter-sample relations, resulting in better generalization. Our method is incorporated into existing affect recognition architectures and evaluated on datasets of electroencephalograms (EEG) and images. We show that the approach proposed in this work leads to consistent performance gains when incorporated in classification/regression networks.
Hao Tang; Nicu Sebe
Abstract:
We propose a novel and unified Cycle in Cycle Generative Adversarial Network (C2GAN) for generating human faces, hands, bodies, and natural scenes. Our proposed C2GAN is a cross-modal model exploring the joint exploitation of the input image data and guidance data in an interactive manner. C2GAN contains two different generators, i.e., an image-generation generator and a guidance-generation generator. Both generators are mutually connected and trained in an end-to-end fashion and explicitly form three cycled subnets, i.e., one image generation cycle and two guidance generation cycles. Each cycle aims at reconstructing the input domain and simultaneously produces a useful output involved in the generation of another cycle. In this way, the cycles constrain each other implicitly providing complementary information from both image and guidance modalities and bringing an extra supervision gradient across the cycles, facilitating a more robust optimization of the whole model. Extensive results on four guided image-to-image translation subtasks demonstrate that the proposed C2GAN is effective in generating more realistic images compared with state-of-the-art models.
Fengxiang Yang; Zhun Zhong; Hong Liu; Zheng Wang; Zhiming Luo; Shaozi Li; Nicu Sebe; Shin'ichi Satoh
Abstract:
Recent advances in person re-identification (re-ID) have led to impressive retrieval accuracy. However, existing re-ID models are challenged by the adversarial examples crafted by adding quasi-imperceptible perturbations. Moreover, re-ID systems face the domain shift issue that training and testing domains are not consistent. In this study, we argue that learning powerful attackers with high universality that works well on unseen domains is an important step in promoting the robustness of re-ID systems. Therefore, we introduce a novel universal attack algorithm called “MetaAttack” for person re-ID. MetaAttack can mislead re-ID models on unseen domains by a universal adversarial perturbation. Specifically, to capture common patterns across different domains, we propose a meta-learning scheme to seek the universal perturbation via the gradient interaction between meta-train and meta-test formed by two datasets. We also take advantage of a virtual dataset (PersonX), instead of real ones, to conduct meta-test. This scheme not only enables us to learn with more comprehensive variation factors but also mitigates the negative effects caused by biased factors of real datasets. Experiments on three large-scale re-ID datasets demonstrate the effectiveness of our method in attacking re-ID models on unseen domains. Our final visualization results reveal some new properties of existing re-ID systems, which can guide us in designing a more robust re-ID model. Code and supplemental material are available at https://github.com/FlyingRoastDuck/MetaAttack AAAI21.
Filareti Tsalakanidou; Symeon Papadopoulos; Vasileios Mezaris; Ioannis Kompatsiaris; Birgit Gray; Danae Tsabouraki; Maritini Kalogerini; Fulvio Negro; Maurizio Montagnuolo; Jesse de Vos; Philo van Kemenade; Daniele Gravina; Rémi Mignot; Alexey Ozerov; Francois Schnitzler; Artur Garcia-Saez; Georgios N. Yannakakis; Antonios Liapis; Georgi Kostadinov;
Abstract:
Artificial Intelligence brings exciting innovations in all aspects of life and creates new opportunities across industry sectors. At the same time, it raises significant questions in terms of trust, ethics, and accountability. This paper offers an introduction to the AI4Media project, which aims to build on recent advances of AI in order to offer innovative tools to the media sector. AI4Media unifies the fragmented landscape of media-related AI technologies by investigating new learning paradigms and distributed AI, exploring issues of AI explainability, robustness and privacy, examining AI techniques for content analysis, and exploiting AI to address major societal challenges. In this paper, we focus on our vision of how such AI technologies can reshape the media sector, by discussing seven industrial use cases that range from combating disinformation in social media and supporting journalists for news story creation, to high quality video production, game design, and artistic co-creation. For each of these use cases, we highlight the present challenges and needs, and explain how they can be efficiently addressed by using innovative AI-driven solutions.
Willi Menapace; Stephane Lathuiliere; Sergey Tulyakov; Aliaksandr Siarohin; Elisa Ricci
Abstract:
This paper introduces the unsupervised learning problem of playable video generation (PVG). In PVG, we aim at allowing a user to control the generated video by selecting a discrete action at every time step as when playing a video game. The difficulty of the task lies both in learning semantically consistent actions and in generating realistic videos conditioned on the user input. We propose a novel framework for PVG that is trained in a self-supervised manner on a large dataset of unlabelled videos. We employ an encoder-decoder architecture where the predicted action labels act as bottleneck. The network is constrained to learn a rich action space using, as main driving loss, a reconstruction loss on the generated video. We demonstrate the effectiveness of the proposed approach on several datasets with wide environment variety. Further details, code and examples are available on our project page: willimenapace.github.io/playable-video-generation-website.
Fengxiang Yang; Zhun Zhong; Zhiming Luo; Yuanzheng Cai; Yaojin Lin; Shaozi Li; Nicu Sebe
Abstract:
This paper considers the problem of unsupervised person re-identification (re-ID), which aims to learn discriminative models with unlabeled data. One popular method is to obtain pseudo-label by clustering and use them to optimize the model. Although this kind of approach has shown promising accuracy, it is hampered by 1) noisy labels produced by clustering and 2) feature variations caused by camera shift. The former will lead to incorrect optimization and thus hinders the model accuracy. The latter will result in assigning the intra-class samples of different cameras to different pseudo-label, making the model sensitive to camera variations. In this paper, we propose a unified framework to solve both problems. Concretely, we propose a Dynamic and Symmetric Cross Entropy loss (DSCE) to deal with noisy samples and a camera-aware meta-learning algorithm (MetaCam) to adapt camera shift. DSCE can alleviate the negative effects of noisy samples and accommodate the change of clusters after each clustering step. MetaCam simulates cross-camera constraint by splitting the training data into meta-train and meta-test based on camera IDs. With the interacted gradient from meta-train and meta-test, the model is enforced to learn camera-invariant features. Extensive experiments on three re-ID benchmarks show the effectiveness and the complementary of the proposed DSCE and MetaCam. Our method outperforms the state-of-the-art methods on both fully unsupervised re-ID and unsupervised domain adaptive re-ID.
Yuyang Zhao; Zhun Zhong; Fengxiang Yang; Zhiming Luo; Yaojin Lin; Shaozi Li; Nicu Sebe
Abstract:
Recent advances in person re-identification (ReID) obtain impressive accuracy in the supervised and unsupervised learning settings. However, most of the existing methods need to train a new model for a new domain by accessing data. Due to public privacy, the new domain data are not always accessible, leading to a limited applicability of these methods. In this paper, we study the problem of multisource domain generalization in ReID, which aims to learn a model that can perform well on unseen domains with only several labeled source domains. To address this problem, we propose the Memory-based Multi-Source Meta-Learning (M3L) framework to train a generalizable model for unseen domains. Specifically, a meta-learning strategy is introduced to simulate the train-test process of domain generalization for learning more generalizable models. To overcome the unstable meta-optimization caused by the parametric classifier, we propose a memory-based identification loss that is non-parametric and harmonizes with meta-learning. We also present a meta batch normalization layer (MetaBN) to diversify meta-test features, further establishing the advantage of meta-learning. Experiments demonstrate that our M3L can effectively enhance the generalization ability of the model for unseen domains and can outperform the state-of-the-art methods on four large-scale ReID datasets.
Zhun Zhong; Linchao Zhu; Zhiming Luo; Shaozi Li; Yi Yang; Nicu Sebe
Abstract:
In this paper, we tackle the problem of discovering new classes in unlabeled visual data given labeled data from disjoint classes. Existing methods typically first pre-train a model with labeled data, and then identify new classes in unlabeled data via unsupervised clustering. However, the labeled data that provide essential knowledge are often underexplored in the second step. The challenge is that the labeled and unlabeled examples are from non-overlapping classes, which makes it difficult to build a learning relationship between them. In this work, we introduce OpenMix to mix the unlabeled examples from an open set and the labeled examples from known classes, where their nonoverlapping labels and pseudo-labels are simultaneously mixed into a joint label distribution. OpenMix dynamically compounds examples in two ways. First, we produce mixed training images by incorporating labeled examples with unlabeled examples. With the benefit of unique prior knowledge in novel class discovery, the generated pseudo-labels will be more credible than the original unlabeled predictions. As a result, OpenMix helps preventing the model from overfitting on unlabeled samples that may be assigned with wrong pseudo-labels. Second, the first way encourages the unlabeled examples with high class-probabilities to have considerable accuracy. We introduce these examples as reliable anchors and further integrate them with unlabeled samples. This enables us to generate more combinations in unlabeled examples and exploit finer object relations among the new classes. Experiments on three classification datasets demonstrate the effectiveness of the proposed OpenMix, which is superior to state-of-the-art methods in novel class discovery.
Zhun Zhong; Enrico Fini; Subhankar Roy; Zhiming Luo; Elisa Ricci; Nicu Sebe
Abstract:
In this paper, we address Novel Class Discovery (NCD), the task of unveiling new classes in a set of unlabeled samples given a labeled dataset with known classes. We exploit the peculiarities of NCD to build a new framework, named Neighborhood Contrastive Learning (NCL), to learn discriminative representations that are important to clustering performance. Our contribution is twofold. First, we find that a feature extractor trained on the labeled set generates representations in which a generic query sample and its neighbors are likely to share the same class. We exploit this observation to retrieve and aggregate pseudo-positive pairs with contrastive learning, thus encouraging the model to learn more discriminative representations. Second, we notice that most of the instances are easily discriminated by the network, contributing less to the contrastive loss. To overcome this issue, we propose to generate hard negatives by mixing labeled and unlabeled samples in the feature space. We experimentally demonstrate that these two ingredients significantly contribute to clustering performance and lead our model to outperform state-of-the-art methods by a large margin (e.g., clustering accuracy +13% on CIFAR-100 and +8% on ImageNet).
Subhankar Roy; Evgeny Krivosheev; Zhun Zhong; Nicu Sebe; Elisa Ricci
Abstract:
In this paper we address multi-target domain adaptation (MTDA), where given one labeled source dataset and multiple unlabeled target datasets that differ in data distributions, the task is to learn a robust predictor for all the target domains. We identify two key aspects that can help to alleviate multiple domain-shifts in the MTDA: feature aggregation and curriculum learning. To this end, we propose Curriculum Graph Co-Teaching (CGCT) that uses a dual classifier head, with one of them being a graph convolutional network (GCN) which aggregates features from similar samples across the domains. To prevent the classifiers from over-fitting on its own noisy pseudo-labels we develop a co-teaching strategy with the dual classifier head that is assisted by curriculum learning to obtain more reliable pseudo-labels. Furthermore, when the domain labels are available, we propose Domain-aware Curriculum Learning (DCL), a sequential adaptation strategy that first adapts on the easier target domains, followed by the harder ones. We experimentally demonstrate the effectiveness of our proposed frameworks on several benchmarks and advance the state-of-the-art in the MTDA by large margins (e.g. +5.6% on the DomainNet).
Yahui Liu; Enver Sangineto; Yajing Chen; Linchao Bao; Haoxian Zhang; Nicu Sebe; Bruno Lepri; Wei Wang; Marco de Nadai
Abstract:
Image-to-Image (I2I) multi-domain translation models are usually evaluated also using the quality of their semantic interpolation results. However, state-of-the-art models frequently show abrupt changes in the image appearance during interpolation, and usually perform poorly in interpolations across domains. In this paper, we propose a new training protocol based on three specific losses which help a translation network to learn a smooth and disentangled latent style space in which: 1) Both intra- and inter-domain interpolations correspond to gradual changes in the generated images and 2) The content of the source image is better preserved during the translation. Moreover, we propose a novel evaluation metric to properly measure the smoothness of latent style space of I2I translation models. The proposed method can be plugged in existing translation approaches, and our extensive experiments on different datasets show that it can significantly boost the quality of the generated images and the graduality of the interpolations.
Dan-Cristian Stanciu; Bogdan Ionescu
Abstract:
Generative models have evolved immensely in the last few years. GAN-based video and image generation has become very accessible due to open source software available to anyone, and that may pose a threat to society. Deepfakes can be used to intimidate, blackmail certain public figures or to mislead the public. At the same time, with the rising popularity of deepfakes, detection algorithms have also evolved significantly. The majority of those algorithms focus on images rather than to explore the temporal evolution in the video. In this paper, we explore whether the temporal information of the video can be used to increase the performance of state-of-the-art deepfake detection algorithms. We also investigate whether certain facial regions contain more information about the authenticity of the video by using the entire aligned face as input for our model and by only selecting certain facial regions. We use late fusion to combine those results for increased performance. To validate our solution, we experiment on 2 state-of-the-art datasets, namely FaceForensics++ and CelebDF. The results show that using the temporal dimension can greatly enhance the performance of a deep learning model.
Mihai Gabriel Constantin; Dan-Ștefan Pârvu; Cristian Stanciu; Denisa Ionaşcu; Bogdan Ionescu
Abstract:
The modern advances of social media platforms and content sharing websites led to the popularization of Internet memes, and today's Internet landscape contains websites that are predominantly dedicated to meme sharing. While at their inception memes were mostly humorous, this concept evolved and nowadays memes cover a wide variety of subjects, including political and social commentaries. Considering the widespread use of memes and their power of conveying distilled messages, they became an important method for spreading hate speech against individuals or targeted groups. Given the multimodal nature of Internet memes, our proposed approach is also a multimodal one, consisting of two parallel processing branches, one textual and one visual, that are joined in a final classification step, providing prediction results for the samples. We test our approach on the publicly available Memotion 7k dataset and compare our results with the baseline approach developed for the dataset.
Alba G. Seco de Herrera; Rukiye Savran Kiziltepe; Jon Chamberlain; Mihai Gabriel Constantin; Claire-Hélène Demarty; Faiyaz Doctor; Bogdan Ionescu; Alan F. Smeaton
Abstract:
This paper describes the MediaEval 2020 Predicting Media Memorability task. After first being proposed at MediaEval 2018, the Predicting Media Memorability task is in its 3rd edition this year, as the prediction of short-term and long-term video memorability (VM) remains a challenging task. In 2020, the format remained the same as in previous editions. This year the videos are a subset of the TRECVid 2019 Video-to-Text dataset, containing more action rich video content as compared with the 2019 task. In this paper a description of some aspects of this task is provided, including its main characteristics, a description of the collection, the ground truth dataset, evaluation metrics and the requirements for participants’ run submissions.
Gkalelis, Nikolaos; Goulas, Andreas; Galanopoulos, Damianos; Mezaris, Vasileios
Abstract:
In this paper a novel bottom-up video event recognition approach is proposed, ObjectGraphs, which utilizes a rich frame representation and the relations between objects within each frame. Following the application of an object detector (OD) on the frames, graphs are used to model the object relations and a graph convolutional network (GCN) is utilized to perform reasoning on the graphs. The resulting object-based frame-level features are then forwarded to a long short-term memory (LSTM) network for video event recognition. Moreover, the weighted in-degrees (WiDs) derived from the graph’s adjacency matrix at frame level are used for identifying the objects that were considered most (or least) salient for event recognition and contributed the most (or least) to the final event recognition decision, thus providing an explanation for the latter. The experimental results show that the proposed method achieves state-of-the-art performance on the publicly available FCVID and YLI-MED datasets. Source code for our ObjectGraphs method is made publicly available at: https://github.com/bmezaris/ObjectGraphs.
Lagani Gabriele CNR-ISTI ; Mazziotti Raffaele; Falchi Fabrizio; Gennaro Claudio; Cicchini Guido Marco; Pizzorusso Tommaso; Cremisi Federico; Amato Giuseppe
Abstract:
Previous work has shown that it is possible to train neuronal cultures on Multi-Electrode Arrays (MEAs), to recognize very simple patterns. However, this work was mainly focused to demonstrate that it is possible to induce plasticity in cultures, rather than performing a rigorous assessment of their pattern recognition performance. In this paper, we address this gap by developing a methodology that allows us to assess the performance of neuronal cultures on a learning task. Specifically, we propose a digital model of the real cultured neuronal networks; we identify biologically plausible simulation parameters that allow us to reliably reproduce the behavior of real cultures; we use the simulated culture to perform handwritten digit recognition and rigorously evaluate its performance; we also show that it is possible to find improved simulation parameters for the specific task, which can guide the creation of real cultures.
Werner Bailer; Georg Thallinger; Gerhard Backfried; Dorothea Thomas-Aniola
Abstract:
Fake news and misinformation is a widespread phenomenon these days, affecting social media, alternative and traditional media. In a climate of increasing polarization and perceived societal injustice, the topic of migration is one domain that is frequently the target of fake news, addressing both migrants and citizens in host countries. The problem is inherently a multi-lingual and multi-modal one in that it involves information in an array of languages, material in textual, visual and auditory form and often involves communication in a language which may be unfamiliar to recipients or which these recipients only may have basic knowledge of. We argue that semi-automatic approaches, empowering users to gain a clearer picture and base their decisions on sound information, are needed to counter the problem of misinformation. In order to deal with the scale of the problem, such approaches involve a variety of technologies from the field of Artificial Intelligence (AI). In this paper we identify a number of challenges related to implementing approaches for the detection of fake news in the context of migration. These include collecting multi-lingual and multi-modal datasets related to the migration domain, providing explanations of AI tools used in verification to both media professionals and consumers. Further efforts in truly collaborative AI will be needed.
Tiziano Fagni; Fabrizio Falchi; Margherita Gambini; Antonio Martella; Maurizio Tesconi;
Abstract:
The recent advances in language modeling significantly improved the generative capabilities of deep neural models: in 2019 OpenAI released GPT-2, a pre-trained language model that can autonomously generate coherent, non-trivial and human-like text samples. Since then, ever more powerful text generative models have been developed. Adversaries can exploit these tremendous generative capabilities to enhance social bots that will have the ability to write plausible deepfake messages, hoping to contaminate public debate. To prevent this, it is crucial to develop deepfake social media messages detection systems. However, to the best of our knowledge no one has ever addressed the detection of machine-generated texts on social networks like Twitter or Facebook. With the aim of helping the research in this detection field, we collected the first dataset of real deepfake tweets, TweepFake. It is real in the sense that each deepfake tweet was actually posted on Twitter. We collected tweets from a total of 23 bots, imitating 17 human accounts. The bots are based on various generation techniques, i.e., Markov Chains, RNN, RNN+Markov, LSTM, GPT-2. We also randomly selected tweets from the humans imitated by the bots to have an overall balanced dataset of 25,572 tweets (half human and half bots generated). The dataset is publicly available on Kaggle. Lastly, we evaluated 13 deepfake text detection methods (based on various state-of-the-art approaches) to both demonstrate the challenges that Tweepfake poses and create a solid baseline of detection techniques. We hope that TweepFake can offer the opportunity to tackle the deepfake detection on social media messages as well.
Tobias Blanke; Tommaso Venturini
Abstract:
Automated unsupervised video summarization by key-frame extraction consists in identifying representative video frames, best abridging a complete input sequence, and temporally ordering them to form a video summary, without relying on manually constructed ground-truth key-frame sets. State-of-the-art unsupervised deep neural approaches consider the desired summary to be a subset of the original sequence, composed of video frames that are sufficient to visually reconstruct the entire input. They typically employ a pre-trained CNN for extracting a vector representation per RGB video frame and a baseline LSTM adversarial learning framework for identifying key-frames. In this paper, to better guide the network towards properly selecting video frames that can faithfully reconstruct the original video, we augment the baseline framework with an additional LSTM autoencoder, which learns in parallel a fixed-length representation of the entire original input sequence. This is exploited during training, where a novel loss term inspired by dictionary learning is added to the network optimization objectives, further biasing key-frame selection towards video frames which are collectively able to recreate the original video. Empirical evaluation on two common public relevant datasets indicates highly favourable results.This article shows how a machine can employ a network view to reason about complex social relations of news reliability. Such a network view promises a topic-agnostic perspective that can be a useful hint on reliability trends and their heterogeneous assumptions. In our analysis, we depart from the ever-growing numbers of papers trying to find machine learning algorithms to predict the reliability of news and focus instead on using machine reasoning to understand the structure of news networks by comparing it with our human judgements. Understanding and representing news networks is not easy, not only because they can be extremely vast but also because they are shaped by several overlapping network dynamics. We present a machine learning approach to analyse what constitutes reliable news from the view of a network. Our aim is to machine-read a network’s understanding of news reliability. To analyse real-life news sites, we used the Décodex dataset to train machine learning models from the structure of the underlying network. We then employ the models to draw conclusions how the Décodex evaluators came to assess the reliability of news.
Lagani Gabriele; Mazziotti Raffaele; Falchi Fabrizio; Gennaro Claudio; Cicchini Guido Marco; Pizzorusso Tommaso; Cremisi Federico; Amato Giuseppe
Abstract:
Previous work has shown that it is possible to train neuronal cultures on Multi-Electrode Arrays (MEAs), to recognize very simple patterns. However, this work was mainly focused to demonstrate that it is possible to induce plasticity in cultures, rather than performing a rigorous assessment of their pattern recognition performance. In this paper, we address this gap by developing a methodology that allows us to assess the performance of neuronal cultures on a learning task. Specifically, we propose a digital model of the real cultured neuronal networks; we identify biologically plausible simulation parameters that allow us to reliably reproduce the behavior of real cultures; we use the simulated culture to perform handwritten digit recognition and rigorously evaluate its performance; we also show that it is possible to find improved simulation parameters for the specific task, which can guide the creation of real cultures.
Mayet, Tsiry; Lambert, Anne; Le Guyadec, Pascal; Le Bolzer, Francoise; Schnitzler, Francois;
Abstract:
We introduce Skip-Window, a method to allow recurrent neural networks (RNNs) to trade off accuracy for computational cost during the analysis of a sequence. Similarly to existing approaches, Skip-Window extends existing RNN cells by adding a mechanism to encourage the model to process fewer inputs. Unlike existing approaches, Skip-Window is able to respect a strict computational budget, making this model more suitable for limited hardware like edge devices. We evaluate this approach on four datasets: a human activity recognition task, sequential MNIST, IMDB and adding task. Our results show that Skip-Window is often able to exceed the accuracy of existing approaches for a lower computational cost while strictly limiting said cost.
Martin Wistuba; Josif Grabocka;
Abstract:
Hyperparameter optimization (HPO) is a central pillar in the automation of machine learning solutions and is mainly performed via Bayesian optimization, where a parametric surrogate is learned to approximate the black box response function (e.g. validation error). Unfortunately, evaluating the response function is computationally intensive. As a remedy, earlier work emphasizes the need for transfer learning surrogates which learn to optimize hyperparameters for an algorithm from other tasks. In contrast to previous work, we propose to rethink HPO as a few-shot learning problem in which we train a shared deep surrogate model to quickly adapt (with few response evaluations) to the response function of a new task. We propose the use of a deep kernel network for a Gaussian process surrogate that is meta-learned in an end-to-end fashion in order to jointly approximate the response functions of a collection of training data sets. As a result, the novel few-shot optimization of our deep kernel surrogate leads to new state-of-the-art results at HPO compared to several recent methods on diverse metadata sets.
Hao Tang; Hong Liu; Wei Xiao; Nicu Sebe
Abstract:
We present a new deep dictionary learning and coding network (DDLCN) for image-recognition tasks with limited data. The proposed DDLCN has most of the standard deep learning layers (e.g., input/output, pooling, and fully connected), but the fundamental convolutional layers are replaced by our proposed compound dictionary learning and coding layers. The dictionary learning learns an overcomplete dictionary for input training data. At the deep coding layer, a locality constraint is added to guarantee that the activated dictionary bases are close to each other. Then, the activated dictionary atoms are assembled and passed to the compound dictionary learning and coding layers. In this way, the activated atoms in the first layer can be represented by the deeper atoms in the second dictionary. Intuitively, the second dictionary is designed to learn the fine-grained components shared among the input dictionary atoms; thus, a more informative and discriminative low-level representation of the dictionary atoms can be obtained. We empirically compare DDLCN with several leading dictionary learning methods and deep learning models. Experimental results on five popular data sets show that DDLCN achieves competitive results compared with state-of-the-art methods when the training data are limited. Code is available at https://github.com/Ha0Tang/DDLCN.
Miguel Fabian Romero Rondon; Lucile Sassatelli; Ramon Aparicio-Pardo; Frédéric Precioso
Abstract:
We consider predicting the user's head motion in 360° videos, with 2 modalities only: the past user's positions and the video content (not knowing other users' traces). We make two main contributions. First, we re-examine existing deep-learning approaches for this problem and identify hidden flaws from a thorough root-cause analysis. Second, from the results of this analysis, we design a new proposal establishing state-of-the-art performance. First, re-assessing the existing methods that use both modalities, we obtain the surprising result that they all perform worse than baselines using the user’s trajectory only. A root-cause analysis of the metrics, datasets and neural architectures shows in particular that (i) the content can inform the prediction for horizons longer than 2 to 3 sec. (existing methods consider shorter horizons), and that (ii) to compete with the baselines, it is necessary to have a recurrent unit dedicated to process the positions, but this is not sufficient. Second, from a re-examination of the problem supported with the concept of Structural-RNN, we design a new deep neural architecture, named TRACK. TRACK achieves state-of-the-art performance on all considered datasets and prediction horizons, outperforming competitors by up to 20% on focus-type videos and horizons 2-5 seconds. The entire framework (codes and datasets) is online and received an ACM reproducibility badge https://gitlab.com/miguelfromeror/head-motion-prediction
Bogdan Ionescu; Henning Müller; Renaud Péteri; Asma Ben Abacha; Dina Demner-Fushman; Sadid A. Hasan; Mourad Sarrouti; Obioma Pelka; Christoph M. Friedrich; Alba G. Seco de Herrera; Janadhip Jacutprakart; Vassili Kovalev; Serge Kozlovski; Vitali Liauchuk; Yashin Dicente Cid; Jon Chamberlain; Adrian Clark; Antonio Campello; Hassan Moustahfid; Thomas Oliver; Abigail Schulz; Paul Brie; Raul Berari; Dimitri Fichou; Andrei Tauteanu; Mihai Dogariu; Liviu Daniel Stefan; Mihai Gabriel Constantin; Jérôme Deshayes; Adrian Popescu
Abstract:
This paper presents the ideas for the 2021 ImageCLEF lab that will be organized as part of the Conference and Labs of the Evaluation Forum—CLEF Labs 2021 in Bucharest, Romania. ImageCLEF is an ongoing evaluation initiative (active since 2003) that promotes the evaluation of technologies for annotation, indexing and retrieval of visual data with the aim of providing information access to large collections of images in various usage scenarios and domains. In 2021, the 19th edition of ImageCLEF will organize four main tasks: (i) a Medical task addressing visual question answering, a concept annotation and a tuberculosis classification task, (ii) a Coral task addressing the annotation and localisation of substrates in coral reef images, (iii) a DrawnUI task addressing the creation of websites from either a drawing or a screenshot by detecting the different elements present on the design and a new (iv) Aware task addressing the prediction of real-life consequences of online photo sharing. The strong participation in 2020, despite the COVID pandemic, with over 115 research groups registering and 40 submitting over 295 runs for the tasks shows an important interest in this benchmarking campaign. We expect the new tasks to attract at least as many researchers for 2021.
Moreo, Alejandro; Sebastiani, Fabrizio
Abstract:
Learning to quantify (a.k.a. quantification) is a task concerned with training unbiased estimators of class prevalence via supervised learning. This task originated with the observation that “Classify and Count” (CC), the trivial method of obtaining class prevalence estimates, is often a biased estimator, and thus delivers suboptimal quantification accuracy. Fol- lowing this observation, several methods for learning to quantify have been proposed and have been shown to outperform CC. In this work we contend that previous works have failed to use properly optimised versions of CC. We thus reassess the real merits of CC and its variants, and argue that, while still inferior to some cutting-edge methods, they deliver near-state-of-the- art accuracy once (a) hyperparameter optimisation is performed, and (b) this optimisation is performed by using a truly quantification-oriented evaluation protocol. Experiments on three publicly available binary sentiment classification datasets support these conclusions.
Sfikas, Konstantinos; Liapis, Antonios
Abstract:
Competitive board games have provided a rich and diverse testbed for artificial intelligence. This paper contends that collaborative board games pose a different challenge to artificial intelligence as it must balance short-term risk mitigation with long-term winning strategies. Collaborative board games task all players to coordinate their different powers or pool their resources to overcome an escalating challenge posed by the board and a stochastic ruleset. This paper focuses on the exemplary collaborative board game Pandemic and presents a rolling horizon evolutionary algorithm designed specifically for this game. The complex way in which the Pandemic game state changes in a stochastic but predictable way required a number of specially designed forward models, macro-action representations for decision-making, and repair functions for the genetic operations of the evolutionary algorithm. Variants of the algorithm which explore optimistic versus pessimistic game state evaluations, different mutation rates and event horizons are compared against a baseline hierarchical policy agent. Results show that an evolutionary approach via short-horizon rollouts can better account for the future dangers that the board may introduce, and guard against them. Results highlight the types of challenges that collaborative board games pose to artificial intelligence, especially for handling multi-player collaboration interactions.
Moreo, Alejandro; Pedrotti, Andrea; Sebastiani, Fabrizio
Abstract:
Funnelling (Fun) is a method for cross-lingual text classification (CLC) based on a two-tier ensemble for heterogeneous transfer learning. In Fun, 1st-tier classifiers, each working on a different, language-dependent feature space, return a vector of calibrated posterior probabilities (with one dimension for each class) for each document, and the final classification decision is taken by a meta- classifier that uses this vector as its input. The metaclassifier can thus exploit class-class correlations, and this (among other things) gives Fun an edge over CLC systems where these correlations cannot be leveraged.
We here describe Generalized Funnelling (gFun), a learning ensemble where the metaclassifier receives as input the above vector of calibrated posterior probabilities, concatenated with document embeddings (aligned across languages) that embody other types of correlations, such as word-class correlations (as encoded by Word-Class Embeddings) and word-word correlations (as encoded by Multilingual Unsupervised or Supervised Embeddings). We show that gFun improves on Fun by describing experiments on two large, standard multilingual datasets for multi-label text classification.
Roberto Caldelli; Leonardo Galteri; Irene Amerini; Alberto Del Bimbo
Abstract:
A new phenomenon named Deepfakes constitutes a serious threat in video manipulation. AI-based technologies have provided easy-to-use methods to create extremely realistic videos. On the side of multimedia forensics, being able to individuate this kind of fake contents becomes ever more crucial. In this work, a new forensic technique able to detect fake and original video sequences is proposed; it is based on the use of CNNs trained to distinguish possible motion dissimilarities in the temporal structure of a video sequence by exploiting optical flow fields. The results obtained highlight comparable performances with the state-of-the-art methods which, in general, only resort to single video frames. Furthermore, the proposed optical flow based detection scheme also provides a superior robustness in the more realistic cross-forgery operative scenario and can even be combined with frame-based approaches to improve their global effectiveness.
Mihai Gabriel Constantin; Liviu-Daniel Ştefan; Bogdan Ionescu; Ngoc Q. K. Duong; Claire-Héléne Demarty; Mats Sjöberg
Abstract:
In this paper, we report on the creation of a publicly available, common evaluation framework for image and video visual interestingness prediction. We propose a robust data set, the Interestingness10k, with 9831 images and more than 4 h of video, interestigness scores determined based on more than 1M pair-wise annotations of 800 trusted annotators, some pre-computed multi-modal descriptors, and 192 system output results as baselines. The data were validated extensively during the 2016–2017 MediaEval benchmark campaigns. We provide an in-depth analysis of the crucial components of visual interestingness prediction algorithms by reviewing the capabilities and the evolution of the MediaEval benchmark systems, as well as of prominent systems from the literature. We discuss overall trends, influence of the employed features and techniques, generalization capabilities and the reliability of results. We also discuss the possibility of going beyond state-of-the-art performance via an automatic, ad-hoc system fusion, and propose a deep MLP-based architecture that outperforms the current state-of-the-art systems by a large margin. Finally, we provide the most important lessons learned and insights gained.
Federico Pernici; Matteo Bruni; Claudio Baecchi; Alberto Del Bimbo
Abstract:
Neural networks are widely used as a model for classification in a large variety of tasks. Typically, a learnable transformation (i.e., the classifier) is placed at the end of such models returning a value for each class used for classification. This transformation plays an important role in determining how the generated features change during the learning process. In this work, we argue that this transformation not only can be fixed (i.e., set as nontrainable) with no loss of accuracy and with a reduction in memory usage, but it can also be used to learn stationary and maximally separated embeddings. We show that the stationarity of the embedding and its maximal separated representation can be theoretically justified by setting the weights of the fixed classifier to values taken from the coordinate vertices of the three regular polytopes available in Rd, namely, the d-Simplex, the d-Cube, and the d-Orthoplex. These regular polytopes have the maximal amount of symmetry that can be exploited to generate stationary features angularly centered around their corresponding fixed weights. Our approach improves and broadens the concept of a fixed classifier, recently proposed by Hoffer et al., to a larger class of fixed classifier models. Experimental results confirm the theoretical analysis, the generalization capability, the faster convergence, and the improved performance of the proposed method. Code will be publicly available.
Mara Graziani; Thomas Lompech; Henning Müller; Vincent Andrearczyk;
Abstract:
Visualization methods for Convolutional Neural Net-works (CNNs) are spreading within the medical com-munity to obtain explainable AI (XAI). The sole quali-tative assessment of the explanations is subject to a riskof confirmation bias. This paper proposes a methodol-ogy for the quantitative evaluation of common visual-ization approaches for histopathology images, i.e. ClassActivation Mapping and Local-Interpretable Model-Agnostic Explanations. In our evaluation, we proposeto assess four main points, namely the alignment withclinical factors, the agreement between XAI methods,the consistency and repeatability of the explanations. Todo so, we compare the intersection over union of multi-ple visualizations of the CNN attention with the seman-tic annotation of functionally different nuclei types. Theexperimental results do not show stronger attributions tothe multiple nuclei types than those of a randomly ini-tialized CNN. The visualizations hardly agree on salientareas and LIME outputs have particularly unstable re-peatability and consistency. The qualitative evaluationalone is thus not sufficient to establish the appropriate-ness and reliability of the visualization tools. The codeis available on GitHub atbit.ly/2K48HKz.
Luca Ciampi; Carlos Santiago; Joao Paulo Costeira; Claudio Gennaro; Giuseppe Amato
Abstract:
Convolutional Neural Networks have produced state-of-the-art results for a multitude of computer vision tasks under supervised learning. However, the crux of these methods is the need for a massive amount of labeled data to guarantee that they generalize well to diverse testing scenarios. In many real-world applications, there is indeed a large domain shift between the distributions of the train (source) and test (target) domains, leading to a significant drop in performance at inference time. Unsupervised Domain Adaptation (UDA) is a class of techniques that aims to mitigate this drawback without the need for labeled data in the target domain. This makes it particularly useful for the tasks in which acquiring new labeled data is very expensive, such as for semantic and instance segmentation. In this work, we propose an end-to-end CNN-based UDA algorithm for traffic density estimation and counting, based on adversarial learning in the output space. The density estimation is one of those tasks requiring per-pixel annotated labels and, therefore, needs a lot of human effort. We conduct experiments considering different types of domain shifts, and we make publicly available two new datasets for the vehicle counting task that were also used for our tests. One of them, the Grand Traffic Auto dataset, is a synthetic collection of images, obtained using the graphical engine of the Grand Theft Auto video game, automatically annotated with precise per-pixel labels. Experiments show a significant improvement using our UDA algorithm compared to the model's performance without domain adaptation.
Carrara Fabio; Caldelli Roberto; Falchi Fabrizio; Amato Giuseppe
Abstract:
Deep learned models are now largely adopted in different fields, and they generally provide superior performances with respect to classical signal-based approaches. Notwithstanding this, their actual reliability when working in an unprotected environment is far enough to be proven. In this work, we consider a novel deep neural network architecture, named Neural Ordinary Differential Equations (N-ODE), that is getting particular attention due to an attractive property--a test-time tunable trade-off between accuracy and efficiency. This paper analyzes the robustness of N-ODE image classifiers when faced against a strong adversarial attack and how its effectiveness changes when varying such a tunable trade-off. We show that adversarial robustness is increased when the networks operate in different tolerance regimes during test time and training time. On this basis, we propose a novel adversarial detection strategy for N-ODE nets based on the randomization of the adaptive ODE solver tolerance. Our evaluation performed on standard image classification benchmarks shows that our detection technique provides high rejection of adversarial examples while maintaining most of the original samples under white-box attacks and zero-knowledge adversaries.
Messina Nicola; Falchi Fabrizio; Esuli Andrea; Amato Giuseppe
Abstract:
Image-text matching is an interesting and fascinating task in modern AI research. Despite the evolution of deep-learning-based image and text processing systems, multi-modal matching remains a challenging problem. In this work, we consider the problem of accurate image-text matching for the task of multi-modal large-scale information retrieval. State-of-the-art results in image-text matching are achieved by inter-playing image and text features from the two different processing pipelines, usually using mutual attention mechanisms. However, this invalidates any chance to extract separate visual and textual features needed for later indexing steps in large-scale retrieval systems. In this regard, we introduce the Transformer Encoder Reasoning Network (TERN), an architecture built upon one of the modern relationship-aware self-attentive architectures, the Transformer Encoder (TE). This architecture is able to separately reason on the two different modalities and to enforce a final common abstract concept space by sharing the weights of the deeper transformer layers. Thanks to this design, the implemented network is able to produce compact and very rich visual and textual features available for the successive indexing step. Experiments are conducted on the MS-COCO dataset, and we evaluate the results using a discounted cumulative gain metric with relevance computed exploiting caption similarities, in order to assess possibly non-exact but relevant search results. We demonstrate that on this metric we are able to achieve state-of-the-art results in the image retrieval task. Our code is freely available at https://github.com/mesnico/TERN
Mihai Gabriel Constantin; Liviu-Daniel Ștefan; Bogdan Ionescu
Abstract:
While ensemble systems and late fusion mechanisms have proven their effectiveness by achieving state-of-the-art results in various computer vision tasks, current approaches are not exploiting the power of deep neural networks as their primary ensembling algorithm, but only as inducers, i.e., systems that are used as inputs for the primary ensembling algorithm. In this paper, we propose several deep neural network architectures as ensembling algorithms with various network configurations that use dense and attention layers, an input pre-processing algorithm, and a new type of deep neural network layer denoted the Cross-Space-Fusion layer, that further improves the overall results. Experimental validation is carried out on several data sets from various domains (emotional content classification, medical data captioning) and under various evaluation conditions (two-class regression, binary classification, and multi-label classification), proving the efficiency of DeepFusion.
Moreo, Alejandro; Esuli, Andrea; Sebastiani, Fabrizio;
Abstract:
Pre-trained word embeddings encode general word semantics and lexical regularities of natural language, and have proven useful across many NLP tasks, including word sense disambiguation, machine translation, and sentiment analysis, to name a few. In supervised tasks such as multiclass text classification (the focus of this article) it seems appealing to enhance word representations with ad-hoc embeddings that encode task-specific information. We propose (supervised) word-class embeddings (WCEs), and show that, when concatenated to (unsupervised) pre-trained word embeddings, they substantially facilitate the training of deep-learning models in multiclass classification by topic. We show empirical evidence that WCEs yield a consistent improvement in multiclass classification accuracy, using six popular neural architectures and six widely used and publicly available datasets for multi- class text classification. One further advantage of this method is that it is conceptually simple and straightforward to implement. Our code that implements WCEs is publicly available at https://github.com/AlexMoreo/ word-class-embeddings.
Esuli, Andrea; Molinari, Alessio; Sebastiani, Fabrizio;
Abstract:
We critically re-examine the Saerens-Latinne-Decaestecker (SLD) algorithm, a well-known method for estimating class prior probabilities (“priors”) and adjusting posterior probabilities (“posteriors”) in scenarios characterized by distribution shift, i.e., difference in the distribution of the priors between the training and the unlabelled documents. Given a machine learned classifier and a set of unlabelled documents for which the classifier has returned posterior probabilities and estimates of the prior probabilities, SLD updates them both in an iterative, mutually recursive way, with the goal of making both more accurate; this is of key importance in downstream tasks such as single-label multiclass classification and cost-sensitive text classification. Since its publication, SLD has become the standard algorithm for improving the quality of the posteriors in the presence of distribution shift, and SLD is still considered a top contender when we need to estimate the priors (a task that has become known as “quantification”). However, its real effectiveness in improving the quality of the posteriors has been questioned. We here present the results of systematic experiments conducted on a large, publicly available dataset, across multiple amounts of distribution shift and multiple learners. Our experiments show that SLD improves the quality of the posterior probabilities and of the estimates of the prior probabilities, but only when the number of classes in the classification scheme is very small and the classifier is calibrated. As the number of classes grows, or as we use non-calibrated classifiers, SLD converges more slowly (and often does not converge at all), performance degrades rapidly, and the impact of SLD on the quality of the prior estimates and of the posteriors becomes negative rather than positive.
Belouadah, Eden; Popescu, Adrian; Kanellos, Ioannis
Abstract:
The ability of artificial agents to increment their capabilities when confronted with new data is an open challenge in artificial intelligence. The main challenge faced in such cases is catastrophic forgetting, i.e., the tendency of neural networks to underfit past data when new ones are ingested. A first group of approaches tackles forgetting by increasing deep model capacity to accommodate new knowledge. A second type of approaches fix the deep model size and introduce a mechanism whose objective is to ensure a good compromise between stability and plasticity of the model. While the first type of algorithms were compared thoroughly, this is not the case for methods which exploit a fixed size model. Here, we focus on the latter, place them in a common conceptual and experimental framework and propose the following contributions: (1) define six desirable properties of incremental learning algorithms and analyze them according to these properties, (2) introduce a unified formalization of the class-incremental learning problem, (3) propose a common evaluation framework which is more thorough than existing ones in terms of number of datasets, size of datasets, size of bounded memory and number of incremental states, (4) investigate the usefulness of herding for past exemplars selection, (5) provide experimental evidence that it is possible to obtain competitive performance without the use of knowledge distillation to tackle catastrophic forgetting and (6) facilitate reproducibility by integrating all tested methods in a common open-source repository. The main experimental finding is that none of the existing algorithms achieves the best results in all evaluated settings. Important differences arise notably if a bounded memory of past classes is allowed or not.
Jialin Liu; Sam Snodgrass; Ahmed Khalifa; Sebastian Risi; Georgios N. Yannakakis; Julian Togelius
Abstract:
Procedural content generation in video games has a long history. Existing procedural content generation methods, such as search-based, solver-based, rule-based and grammar-based methods have been applied to various content types such as levels, maps, character models, and textures. A research field centered on content generation in games has existed for more than a decade. More recently, deep learning has powered a remarkable range of inventions in content production, which are applicable to games. While some cutting-edge deep learning methods are applied on their own, others are applied in combination with more traditional methods, or in an interactive setting. This article surveys the various deep learning methods that have been applied to generate game content directly or indirectly, discusses deep learning methods that could be used for content generation purposes but are rarely used today, and envisages some limitations and potential future directions of deep learning for procedural content generation.
AI4Media may use cookies to store your login data, collect statistics to optimize the website's functionality and to perform marketing actions based on your interests.
Required Cookies They allow you to browse the website and use its applications as well as to access secure areas of the website. Without these cookies, the services you have requested cannot be provided.
Functional Cookies These cookies are necessary to allow the main functionality of the website and they are activated automatically when you enter this website. They store user preferences for site usage so that you do not need to reconfigure the site each time you visit it.
Advertising Cookies These cookies direct advertising according to the interests of each user so as to direct advertising campaigns, taking into account the tastes of users, and they also limit the number of times you see the ad, helping to measure the effectiveness of advertising and the success of the website organisation.