
D3.2

Initial Approaches for Decentralised and
High-Performance Learning

Project Title AI4Media - A European Excellence Centre for Media, Society and
Democracy

Contract No. 951911

Instrument Research and Innovation Action

Thematic Priority H2020-EU.2.1.1. - INDUSTRIAL LEADERSHIP - Leadership in
enabling and industrial technologies - Information and Communica-
tion Technologies (ICT) / ICT-48-2020 - Towards a vibrant Euro-
pean network of AI excellence centres

Start of Project 1 September 2020

Duration 48 months

Deliverable title Initial Approaches for Decentralised and High-Performance
Learning

Deliverable number D3.2

Deliverable version 1.0

Previous version(s) N/A

Contractual date of delivery 30 November 2021

Actual date of delivery 3 December 2021

Deliverable filename AI4Media D3 2-final.pdf

Nature of deliverable Report

Dissemination level Public

Number of pages 52

Work Package WP3

Task(s) T3.4, T3.5, T3.8

Parner responsible CERTH

Author(s) Nikolaos Giatsoglou (CERTH), Symeon Papadopoulos
(CERTH), Ioannis Kompatsiaris (CERTH), Nicu Sebe
(UNITN), Hannes Fassold (JR), François Schnitzler (IDF),
Martin Wistuba (IBM), Killian Levacher (IBM), Artur Gar-
cia Saez (BSC)

Editor Symeon Papadopoulos (CERTH)

Officer Evangelia Markidou

Abstract This document presents initial outcomes of the research
on decentralized and high-performance learning in WP3 of
AI4Media. As such, it outlines the research advances of con-
tributing partners in T3.4, T3.5, and T3.8 at month 15. For
each task, we present partner contributions, relevant publica-
tions and links to developed software (if available). Finally,
it discusses plans for ongoing activities and future research.

Keywords AI, Machine Learning, Architecture Search, Optimization,
Decentralization, Distributed Training, Resource Adaptation,
Quantum Learning

Copyright
© Copyright 2021 AI4Media Consortium

This document may not be copied, reproduced, or modified in whole or in part for any purpose
without written permission from the AI4Media Consortium. In addition to such written permission
to copy, reproduce, or modify this document in whole or part, an acknowledgement of the authors
of the document and all applicable portions of the copyright notice must be clearly referenced.

All rights reserved.

Contributors

NAME ORGANIZATION

Nikolaos Giatsoglou CERTH

Symeon Papadopoulos CERTH

Ioannis Kompatsiaris CERTH

Nicu Sebe UNITN

Hannes Fassold JR

François Schnitzler IDF

Martin Wistuba IBM

Killian Levacher IBM

Artur Garcia Saez BSC

Peer Reviews

NAME ORGANIZATION

Ioannis Mademlis AUTH

Mihai Gabriel Constantin UPB

Initial Approaches for Decentralised and High-Performance Learning 3 of 52

Revision History

Version Date Reviewer Modifications

0.1 13/9/2021 Nikolaos Giatsoglou,
Symeon Papadopoulos

First draft sent to part-
ners for contributions

0.2 25/10/2021 Nikolaos Giatsoglou,
Symeon Papadopoulos

Updated version includ-
ing inputs from CERTH,
UNITN, JR, IDF, IBM
and BSC in sections 3,4
and 5.

0.3 5/11/2021 Nikolaos Giatsoglou,
Symeon Papadopoulos,
Ioannis Kompatsiaris

Updated version includ-
ing inputs for the exec-
utive summary and task
introductions in sections
3, 4 and 5 by CERTH,
UNITN and BSC.

0.4 12/11/2021 Nikolaos Giatsoglou,
Symeon Papadopoulos

Updated version includ-
ing inputs for sections
2 and 6 by CERTH,
UNITN, JR, IDF, IBM
and BSC.

0.5 28/11/2021 Nikolaos Giatsoglou,
Symeon Papadopoulos,
Filareti Tsalakanidou

Updated version and
quality management
based on internal review
comments and replies
to them by CERTH,
UNITN, JR, IBM and
BSC.

1.0 30/11/2021 Nikolaos Giatsoglou,
Symeon Papadopoulos,
Ioannis Kompatsiaris

Final version

The information and views set out in this report are those of the author(s) and do not necessarily
reflect the official opinion of the European Union. Neither the European Union institutions and
bodies nor any person acting on their behalf.

Initial Approaches for Decentralised and High-Performance Learning 4 of 52

Table of Abbreviations and Acronyms

Abbreviation Meaning

AI Artificial Intelligence

APoZ Average Percentage of Zeros

BNN Binarized Neural Network

BWN Binary Weight Network

CNN Convolutional Neural Network

CP Canonical Polyadic

D Deliverable

DNN Deep Neural Network

FSBO Few-Shot Bayesian Optimization

GDPR European General Data Protection

GNN Graph Neural Network

GP Gaussian Process

GPU Graphics Processing Unit

HAR Human Activity Recognition

HPO Hyperparameter Optimisation

IPKD InPlace Knowledge Distillation

IID Independent and Identically Distributed

KD Knowledge Distillation

KL Kullback-Leibler

LHS Latin Hypercube Sampling

MC Monte-Carlo

NAS Neural Architecture Search

NLP Natural Language Processing

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

SGA Stochastic Gradient Ascent

SGD Stochastic Gradient Descent

SkipW Skip-Windows

SVD Singular Value Decomposition

T Task

TA Teacher Assistant

TWN Ternary Weight Network

TTQ Trained Ternary Quantization

UAT Universal Approximation Theorem

WP Work Package

WS Warm Start

Initial Approaches for Decentralised and High-Performance Learning 5 of 52

Contents

1 Executive Summary 10

2 Introduction 12

3 Neural Architecture Search (Task 3.4) 13
3.1 Overview of our neural architecture search contributions 13
3.2 Efficient deep learning using model compression and acceleration 13

3.2.1 Model Compression and Acceleration . 14
3.2.2 Relevant publications . 18

3.3 Deep kernel surrogates for few-shot Bayesian hyperparameter optimization 18
3.3.1 Problem Statement . 18
3.3.2 Methodology . 18
3.3.3 Experiments . 20
3.3.4 Relevant publications . 22

4 AI at the Edge, Decentralised and Distributed Learning (Task 3.5) 23
4.1 Overview of our AI at the edge, decentralised and distributed learning contributions 23
4.2 Decentralized information diffusion and graph neural networks 24

4.2.1 Problem setting . 24
4.2.2 Uncertain peer-to-peer random walk diffusion 26
4.2.3 Uncertain peer-to-peer decoupled GNNs . 26
4.2.4 Experiments . 27
4.2.5 JGNN: a library to support learning on edge devices 28
4.2.6 Relevant preprints (to be submitted for publication) 30
4.2.7 Relevant software and/or external resources 30

4.3 Towards efficient distributed training . 30
4.3.1 Introduction . 30
4.3.2 Mini-batch trimming . 31
4.3.3 Experiments and evaluation . 32
4.3.4 Random sample dropping . 32
4.3.5 Relevant publications . 33
4.3.6 Relevant software and/or external resources 33

4.4 Resource aware models for the edge . 33
4.4.1 Resource adaptable RNN . 33
4.4.2 Inplace knowledge distillation with teacher assistant 34
4.4.3 Relevant publications . 37

5 Quantum Assisted Reinforcement Learning (Task 3.8) 38
5.1 Overview of quantum assisted reinforcement learning contributions 38
5.2 Universal approximation of functions with Quantum computers 38

5.2.1 Introduction . 38
5.2.2 One qubit as an approximant of mathematical functions 39
5.2.3 Experiments . 39
5.2.4 Relevant publications . 41
5.2.5 Relevant software and/or external resources 41

Initial Approaches for Decentralised and High-Performance Learning 6 of 52

6 Ongoing Work and Conclusions 42
6.1 Relation to WP8 Use Cases . 42
6.2 Ongoing and future work . 42

6.2.1 Neural architecture search (Task 3.4) . 42
6.2.2 AI at the edge, decentralised and distributed learning (Task 3.5) 43
6.2.3 Quantum assisted reinforcement learning (Task 3.8) 43

6.3 Conclusions . 43

Initial Approaches for Decentralised and High-Performance Learning 7 of 52

List of Tables

1 FSBO obtains better results for all hyperparameter optimization problems. The
best results are in bold. Results that are not significantly worse than the best are
in italics. Used initialization in parentheses: Latin Hypercube Sampling (LHS) and
Warm Start (WS). 20

2 Comparing the accuracy of different types and training schemes of base algorithms
and their combination with the diffusion of p2pGNN. Accuracy is computed after
1000 time steps and averaged across 5 peer-to-peer simulation runs. 29

3 Comparison of training with mini-batch trimming disabled/enabled for various net-
work architectures anddatasets. The first value in each cell is the average test error
(in percent, averaged over 10 runs) with mini-batchtrimming disabled, the second
value is with mini-batch trimming enabled. The lower value is marked in bold. . . 33

Initial Approaches for Decentralised and High-Performance Learning 8 of 52

List of Figures

1 Comparison of the contribution of the various FSBO components to the final solu-
tion. Each component makes its own contribution. 21

2 Definition of a logistic regression model using JGNN with input variable x, output
variable yhat and initialized parameters w1. 30

3 Skip-Window cell implementation example. 34
4 SkipW achieves both a better accuracy and a lower computational cost than base-

lines on a HAR task. For random subsampling, the shaded area corresponds to 3
times the standard deviation on each side of the mean value (50 evaluations). . . . 35

5 Average energy consumption for the analysis of a HAR sequence using SkipW and
PoseNet (MobileNet 0.75) on a Jetson Nano and a Jetson TX2. The dotted line
corresponds to the energy level for no activity and the dashed one to the maximum
instantaneous level measured when models are running. 35

6 Results in terms of classification accuracy for the proposed training approach, using
a MSDNet model on CIFAR-10. 37

7 Fittings for four real-valued functions using the Z benchmark with five layers. Blue
triangles represent classical models, namely Fourier and UAT, while red dots repre-
sent its quantum counterparts computed using a classical simulator. Green squares
are the experimental execution of the optimized quantum model using a supercon-
ducting qubit. The target function is plotted in black for comparison. The analysis
for experimental errors is plotted for the ReLU function and the UAT model. . . . 40

Initial Approaches for Decentralised and High-Performance Learning 9 of 52

1. Executive Summary

This deliverable provides the research results of the activities in Task 3.4 (Neural Architecture
Search), Task 3.5 (AI at the Edge, Decentralised and Distributed Learning) and Task 3.8 (Quantum
Assisted Reinforcement Learning) at M15. We detail the motivation, new methods and results
obtained by involved partners and, when available, provide explicit references to publications and
developed software. We also position contributions with respect to WP8 use cases outlined in D8.1
“Use Cases Definitions and Requirements”.

This work reflects the progress of these tasks so far. All task participants have been active,
many results have been successfully published in top venues of relevant communities and new
software has been made publicly available. All tasks provide support for the implementation of
Artificial Intelligence (AI) methodologies that can be used to support existing AI-powered services
for media-centric applications, especially when dealing with large-scale data either through efficient
algorithms (e.g., neural architecture search) or by running on emerging computing infrastructures
(e.g., edge devices and quantum computers). We next present a summary of each task’s initial
approaches and ongoing research, as well as prospective directions.

Neural architecture search (Task 3.4). Contributions in this task include: (a) an efficient
deep learning approach using model compression and acceleration, and (b) rethinking hyperpa-
rameter optimization as a few-shot learning task of surrogate models for parameter estimation.
These mitigate the time needed to find high-performing neural architectures that best match avail-
able data by respectively reducing the run time of neural models and intelligently moving towards
comparing few near-best hyperparameters. Thus, they enable replacement of human-driven hy-
perparameter exploration and its associated costs with automated processes that can be employed
by non-experts.

Ongoing and future work for this task includes: (i) investigating neuro-evolutionary network
architecture search approaches, which automatically search for optimal neural network architec-
tures using evolutionary algorithms, and (ii) investigating efficient evolutionary algorithms with
low memory footprints to evolve a dynamic image classifier.

AI at the edge, decentralized and distributed learning (Task 3.5). Contributions in this
task include: (a) edge diffusion-based mining and learning in decentralized peer-to-peer networks,
including adaptations of graph neural network breakthroughs for the classification of peer nodes
based on local media content, (b) novel training strategies that improve model generalization
(like mini-batch trimming), which will be subsequently ported to distributed training frameworks,
and (c) resource-aware learning that includes lightweight recurrent neural networks and in-place
knowledge distillation that trains deep learning architectures of progressively fewer parameters
given the outputs of previous ones.

Ongoing and future work for this task includes: (i) decentralized learning without homophilous
assumptions and peer-to-peer learning models of higher accuracy, (ii) new adaptive optimization
methods for normal and distributed learning (AdaFamily), and (iii) inference under limited re-
sources at the edge.

Quantum assisted reinforcement learning (Task 3.8). Contributions in this task consist of
developing comprehensive theoretical tools that describe usage of single qubits, i.e., the quantum
mechanics analogue to binary bits, as universal approximators of (two) bounded functions of any
number of variables. This way, theoretical properties that support usage of neural networks to
learn any kind of real-life processes can also be used to justify usage of quantum computing while

Initial Approaches for Decentralised and High-Performance Learning 10 of 52

also boasting maximal information compression and, therefore, maximal learning speedup. This is
verified under real-world conditions by experimenting on a superconducting qubit, where traditional
approximation of arbitrary mathematical functions is replicated using a hybrid Quantum computer
operated by a classical optimization algorithm.

Ongoing and future work for this task includes the application of these techniques to create
more complex operations, including the implementation of learning processes over classical data,
and the execution of reinforcement learning tasks.

Initial Approaches for Decentralised and High-Performance Learning 11 of 52

2. Introduction

The rapidly expanding volumes of data available for training AI models and systems increase train-
ing, execution and human investigation times with rates that the growth of technological resources
struggles to cope with. For instance, billions of mobile devices in the wild have the capacity to
generate proportional amounts of data as they are used by vibrant communities to produce and
share all types of media, such as text, images, video, sound and social connections. Therefore,
due to the sheer number of samples to be analysed, data processing can be time consuming, even
with the support of Graphics Processing Unit (GPU) acceleration. Additionally, AI models are
often highly parameterized (e.g., in terms of the number and breadth of neural layers or training
dropout rates) and sensitive to small perturbations of their hyperparameters; tuning the latter
often requires many training repetitions that multiply the cost of learning.

The above concerns have motivated the introduction of AI paradigms that exhibit a high degree
of automation and computational efficiency when deployed in the real world. These can help avoid
human-oriented risks, such as expert failure in immediately grasping optimal neural architectures,
and can also minimize learning and inference times, for example with more efficient algorithms or
new computing paradigms. In WP3, three promising directions pertaining to this objective are
investigated, each of which aims to speed up different aspects of learning.

First, Task 3.4 addresses the concept of neural architecture search. Typically, the search for
suitable architectures is a time-consuming, arduous and error-prone task. Thus, there are practical
benefits in mitigating the time spent on manually selecting architectures (e.g. the time spent on
investigating hyperparameter perturbations) by reducing the number of experiments run on new
datasets. To do so, research focused on transfer neural architecture search, which leverages past
system experiences on different datasets to accelerate search when new data are provided. This
tackles a well-known problem of traditional architecture search approaches; that they start from
scratch for new datasets. Focus was placed on producing new methods that leverage parameter
sharing and differentiable architecture search and exploring these in terms of their applicability on
multi-objective search and tasks beyond image and text classification. Research and outcomes of
this task are presented in Section 3.

Second, Task 3.5 addresses issues of scale by proposing methods for AI computations to take
place across multiple devices, by investigating three sub-directions: (a) decentralized AI in which
fragments of inference models reside across multiple edge devices (e.g. mobile devices) and these
collaborate to learn tight approximations of centralized equivalents, even under uncertain availabil-
ity, (b) novel training strategies that improve model generalization (mini-batch trimming), which
will be subsequently ported to distributed training frameworks and (c) reducing the size of pre-
trained models so that these can be deployed on edge devices and run under resource constraints
without the need for a central infrastructure. In all cases, AI systems scale with technological
progress, given that new edge devices generating data or AI queries can either be the ones per-
forming additional computations or also lead to the introduction of new cloud infrastructure that
contributes to distributed training of gathered data. Research and outcomes of this task are pre-
sented in Section 4.

Finally, Task 3.8 aims to accelerate learning algorithms themselves by taking advantage of
quantum theory breakthroughs that have the potential to rapidly reduce running time complexity.
In detail, it investigates the usage of qubits as universal approximators that considerably speed up
neural learning operations. Research and outcomes of this task are presented in Section 5.

Initial Approaches for Decentralised and High-Performance Learning 12 of 52

3. Neural Architecture Search (Task 3.4)

3.1. Overview of our neural architecture search contributions

Deep learning models are becoming indispensable tools in many industries. Implementing them,
however, requires a high level of expertise in neural network architectures. Additionally, the
architectures one would select tend to vary significantly, depending on data domains and target
AI tasks. To make matters worse, once adequate architectures are selected, making the best
architectural choices, such as hyperparameter training process selection, is a tedious task that
relies on trial-and-error. In particular, experts need to rely on their past experiences, technical
expertise and understanding of the target application domain. Finally, evaluating the performance
of such models is typically reduced to experts in the selected area in which the model will operate.
For all these reasons, the need to automate as much as possible the processes involved in building
deep learning neural networks is critical in order to fully democratise access to such technology
across all industries. In this section, we present the work carried out so far in this task.

UNITN organized a workshop on Neural Architecture (NAS) search in conjunction with the
CVPR 2021 conference and brought together emerging research areas such as automatic architec-
ture search and hyperparameter optimization among others in order to discuss open challenges
and opportunities ahead in each field. A special issue of the Pattern Recognition journal was
also organized focusing on Deep Learning for Efficient and Robust Pattern Recognition, which
explored NAS related topics such as model compression and acceleration. A survey on recent de-
velopments in deep learning was carried out, in which techniques that enable model compression
and acceleration are explored.

IBM presents novel techniques addressing the need to reduce the trial-and-error processes of
identifying optimal hyperparameters for given neural network architectures. Hyperparameter op-
timization (HPO) has so far mainly been performed using Bayesian optimization. This involves a
parametric surrogate which is learned to approximate the black box response function of individual
neural architectures. Unfortunately, evaluating the response of these functions is computationally
intensive. The novel techniques hence propose to rethink HPO as a few-shot learning problem in
which a shared deep surrogate model is trained to quickly adapt (with few response evaluations)
to the response function of a new task.

3.2. Efficient deep learning using model compression and acceleration

Contributing partners: UNITN
As part of the activities related to this task, UNITN has participated in two important initiatives:

Organization of workshop on Neural Architecture Search. We organized a workshop1 in
conjunction with the IEEE/CVF conference on Computer Vision and Pattern Recognition (CVPR)
2021. One of its goals was to bring together emerging research in the areas of automatic architecture
search, optimization, hyperparameter optimization, data augmentation, representation learning
and computer vision to discuss open challenges and opportunities ahead. Another goal was to
benchmark lightweight NAS in a systematic and realistic approach. In this regard, we made a
step forward in advancing existing state-of-the-art by organizing the first challenge and providing
comprehensive benchmarks for fair comparisons. We set up three competition tracks, i.e., (1)

1https://cvpr21-nas.com

Initial Approaches for Decentralised and High-Performance Learning 13 of 52

https://cvpr21-nas.com

SuperNet2, (2) Performance Prediction3, and (3) Unseen Data4, and we encouraged participants
to propose novel solutions to advance the state-of-the-art. The challenge represented the first
thorough quantitative evaluation on the topic of lightweight NAS. The workshop had 8 prominent
invited speakers, i.e., Alan Yuille, Rongrong Ji, Gao Huang, Yi Ma, Kristen Grauman, Peter Vajda,
Sara Sabour, and Chang Xu and attracted more than 100 participants.

Organization of special issue on Deep Learning for Efficient and Robust Pattern
Recognition. We organized this issue in the Pattern Recognition journal5 and, although its
scope goes beyond NAS, one of the three main areas crucial to its subject, namely model compres-
sion and acceleration, is directly related to NAS. The special issue is going to be published in the
December 2021 issue of the journal and will contain 30 accepted papers out of a total of 118 sub-
mitted manuscripts (an impressive number for a special issue!). For the special issue, we provided
a survey paper covering the most important aspects of the pertinent research in the state of the
art. Below, we detail the aspects directly related to NAS, i.e., model compression and acceleration.

3.2.1. Model Compression and Acceleration

Deep neural networks that achieve high precision in real-world AI tasks often come at the expense
of many parameters, which in turn require significant computational resources and training time.
Thus, there is a demand for model compression and acceleration techniques that would allow
deployment to resource-constrained devices and real-time applications. In recent years, a growing
number of approaches aim to compress and accelerate networks while making minimal compromises
in terms of accuracy. Most of these can be classified into one of the following categories: parameter
pruning, network quantization, low-rank factorization, model distillation, and compact network
design.

Parameter pruning. Pruning is a popular technique that compresses networks by removing
parameters with small impact to performance. Effectively, this reduces network complexity and
avoids overfitting due to over-parameterization [1]. A typical pruning approach can be framed
as an iterative process that repeats three stages: (1) evaluating parameter instances, (2) pruning
parameters according to their importance, (3) fine-tuning to recover accuracy. Pruning can be
either unstructured or be performed on any architectural granularities (e.g., neurons, weights,
filters, channels, layers).

Non-structured pruning does not restrict the specific position of the parameters to be pruned
and can thus lead to irregular structures. LeCun et al. [1] first eliminated unimportant weights
from pre-trained networks and Han et al. [2] proposed an iterative method that removes weights
whose magnitudes are below the predefined threshold and retrain the network to improve accuracy.
This practice was later extended as a pipeline, namely deep compression [3], consisting of pruning,
trained quantization, and Huffman coding. This pipeline achieves up to 35x reduction without
sacrificing accuracy. However, it is impossible to recover mistakenly pruned parameters. Guo et al.
[4] proposed dynamic network surgery to recover incorrectly pruned critical connections by adding
a connection splicing operation after pruning. Another problem was that preset thresholds were not
necessarily optimal and Li et al. [5] transformed threshold tuning into a constrained optimization
problem, thus introducing more flexibility to the approach. Finally, NeST [6] combined gradient-

2https://aistudio.baidu.com/aistudio/competition/detail/64/0/introduction
3https://aistudio.baidu.com/aistudio/competition/detail/71/0/introduction
4https://competitions.codalab.org/competitions/29853
5https://www.sciencedirect.com/journal/pattern-recognition/special-issue/10N494KXDP8

Initial Approaches for Decentralised and High-Performance Learning 14 of 52

https://aistudio.baidu.com/aistudio/competition/detail/64/0/introduction
https://aistudio.baidu.com/aistudio/competition/detail/71/0/introduction
https://competitions.codalab.org/competitions/29853
https://www.sciencedirect.com/journal/pattern-recognition/special-issue/10N494KXDP8

based network growth and magnitude-based pruning to generate accurate and compact Deep Neural
Networks (DNNs).

Non-structured pruning results in irregular sparse structures that may not fit well in most
sparse computation libraries with parallel computation, which impedes actual compression perfor-
mance. Also, non-structured pruning requires an additional index overhead. This has motivated
the introduction of structured pruning approaches that better save computational resources in
practice. Structured pruning can be applied on different granularities of structured sparsity. An-
war et al. [7] proposed an intra-kernel stride pruning method at kernel level for the first time. As
for filter pruning, once a filter is pruned, both the corresponding channel in the next layer and
the kernel accounting for the channel are also pruned. Thus filter pruning can significantly reduce
the computation cost and memory overhead. Group-wise magnitude comparison [8] and Average
Percentage of Zeros (APoZ) of channels [9] have been applied to filter pruning. Similar to dynamic
network surgery [4], soft filter pruning [10] can also be used to adapt a dynamic pattern and thus
improve model capabilities by recovering critical filters.

While the heuristic approaches described above can be effective, optimization methods are
often preferred, as they exhibit improved model accuracy and better compression ratio. Structured
sparsity learning [11] applied a LASSO regularization on structured weight groups, such as channels,
filters, or layers. ThiNet [12] pruned filters based on statistical information from its next layer.
The pruning problem was established as an optimization that minimized the reconstruction error
by weighing the channels. Liu et al. [13] proposed to use the scaling factor in Batch Normalization
to indicate the importance of channels. An L1-norm regularization was added onto the scaling
factor, and channels with small scaling factors would be pruned. Ye et al. [14] proposed a different
regularization to constrain the scaling factor and modify the bias to compensate for the error caused
by pruning. The saliency map corresponding to each layer can also be regarded as an importance
score for pruning [15].

Beyond research on pruning methods, some works have investigated whether parameter pruning
is as valuable as we think. Frankle et al. [16] claimed that a randomly initialized dense network
contains a small subnetwork that, when trained in isolation, can compete with the original. Thus,
a pruned network can perform well when its weights are reset to their initial values and retrained.
On the other hand, Liu et al. [17] claimed that only the pruned structure matters and not the
initial weights; hence, fine-tuning pruned networks performs comparably or worse than training
that model from scratch. As a result, rethinking the value of pruning would be an interesting topic.

Network quantization. Network quantization compresses the original network by reducing
the number of bits required for parameter representation, thus reducing storage and computa-
tion requirements. Methods for network quantization can be roughly categorized into (a) storage
compression and (b) acceleration.

Quantization methods for storage compression typically employ scalar or vector quantization
techniques to reduce space requirements for storing network parameters. The original parame-
ters are approximately represented by a codebook, consisting of a group of clustering centers and
quantized codes indicating a mapping from original parameters to centers. With scalar or vector
quantization, a high compression ratio can be reached. Gong et al. [18] applied scalar quantiza-
tion to the weights of multilayer perceptron networks with k-means clustering and applied vector
quantization to the fully connected layers with product quantization. Quantized CNN [19] utilized
product quantization to compress both fully connected and convolutional layers by minimizing
each layer‘s response error.

Most quantization techniques focus on accelerating computations. This is achieved by reducing
the number of bits capturing neural activations or weight representations, where the common 32-

Initial Approaches for Decentralised and High-Performance Learning 15 of 52

bit floating-point number representations are replaced by low-bit fixed-point ones that run faster.
Some methods only quantize the weights of networks. For example, Gupta et al. [20] argued that
16-bit fixed-point numbers suffice to represent the weights of networks without sacrificing accu-
racy. For faster inference, many extremely low-bit quantizations are investigated. These include
binary weight networks represent weights by only 1 bit, i.e., +1 or -1, and ternary weight networks
represent weights by three values, i.e., +1, 0, or -1. BinaryConnect [21] implemented the training
of the DNN with binary weights and obtained more than 32× compression. Binary Weight Net-
work (BWN) [22] extended BinaryConnect by incorporating a scaling factor with binary weights
to approximate original weights better. BWN achieved good performance on large-scale datasets
such as ImageNet for the first time. BWNH [23] utilized hashing for training binary weight net-
works with the proposed alternating optimization method to learn the hash codes. Similar to
BWN, Ternary Weight Network (TWN) [24] used ternary values that can be presented by 2 bits,
which was more effective than their binary counterpart. Trained Ternary Quantization (TTQ)
[25] simultaneously learned ternary weight values and scaling factors. There are also quantization
approaches performed on both weights and activations. The bitwise neural network [26] intro-
duced binary representations to weights, biases, activations and outputs, thus dramatically saving
computation resources. Binarized Neural Networks (BNNs) [27], an extension to BinaryConnect,
binarized both weights and activations and achieved comparable performance to the baseline on
CIFAR-10. XNOR-Net [22] was proposed as an extension to BWN by binarizing both the weights
and activations, achieving higher precision on ImageNet than BNN.

Low-rank factorization. A typical convolution layer has a filter that can be regarded as a
4D tensor, whose dimensions correspond to the output channel, input channel, height and width.
Low-rank factorization techniques can be used to compress and accelerate networks by finding a
low-rank tensor that is close to the original filter and can be easily decomposed for significantly
reduced computation. Low-rank factorization methods can be classified as two-component, three-
component, or four-component factorization, according to the number of factorized components.
Two-component methods, such as Singular Value Decomposition (SVD), split a convolutional
filter into two successive convolution layers. Jaderberg et al. [28] separated k × k filters into
k × 1 and 1 × k filters. Zhang et al. [29] split filters with d kernels into the succession of a
filter with d′ kernels (the rank d′ < d) of the same size and a filter consisting of d d′ × 1 × 1
kernels. A response reconstruction method was used to ensure the low-rank constraint and deal
with nonlinear responses. Three-component methods factorize the convolutional filters into three
low-rank tensors, i.e., three successive convolutional layers. For example, Zhang et al. [29] further
used the factorization in Jaderberg et al. [28] to split the former filters, resulting in a three-
component factorization that achieved more speed-up. One-shot whole network compression was
presented in Kim et al. [30] based on the Tucker decomposition of kernel tensors. Specifically, the
succession of filters with size 1 × 1, k × k, and 1 × 1 was utilized to approximate the original
filter. Four-component factorization considers the low-rank property on all four dimensions, i.e.,
input channel, output channel, height, and width. The Canonical Polyadic (CP) decomposition,
an extension of SVD, was used in Lebedev et al. [31] to split the convolutional filter into four
convolutions of size 1 × 1, k × 1, 1 × k and 1 × 1. However, CP decomposition would result in a
relatively large approximation error.

Model distillation. Unlike the above approaches, model distillation uses knowledge transferred
from a large trained network (teacher network) to train a smaller network (student network) that
reaches comparable accuracy. Usually, the transfer knowledge is learned by mimicking the class
distributions output via softmax. The knowledge distillation method in [32] followed the idea of

Initial Approaches for Decentralised and High-Performance Learning 16 of 52

learning from the teacher network’s output softmax distribution, where the high temperature was
placed into softmax to soften the teacher’s output during training. FitNets [33] was a framework
proposed to train a thin but deep student network. With a deeper architecture, the student
network can achieve higher accuracy. The student network also took advantage of intermediate
representations of the teacher as distilled knowledge during training. Attention mechanisms can
provide better intermediate representations, so distilling knowledge by mimicking the attention
maps of the teacher networks was effective to enhance the performance of the student network [34].
Distillation methods have also been used in uncertainty quantification, which transfers knowledge
from multiple outputs acquired from Monte-Carlo (MC) dropout or deep ensembles, thus making
epistemic uncertainty estimation in a single pass possible [35, 36].

Compact model design. Besides approaches that rely on pre-trained deep architectures, there
are also attempts to design compact architectures aiming at low cost and fast inference, which is
suitable for deployment on mobile devices and real-time applications.

Some compact architectures focused on enhancing the spatial correlation by enlarging the re-
ception field of the convolutional filters efficiently, such as dilated convolutions [37] and deformable
convolutions [38]. The majority of compact model design approaches focused on enhancing the
channel correlations within a conv layer or between conv layers. The most famous ResNet [39]
used residual connections for inter-layer correlation, and later DenseNet [40] used dense connec-
tions between layers, yielding a more condensed model. More compression can be obtained by
adopting the topology of channels within a conv layer. The convolution was thus divided into a
convolution for each channel to capture the spatial correlation and linear aggregation of outputs
from all channels to capture the channel correlation (usually as a point-wise convolution [41]).
The bottleneck architecture was later proposed using two point-wise convolutions [42]. The former
one projected the feature map to a low-dimensional feature space, and the latter reprojected the
feature map, which passed through a standard convolution, back to the original feature space.
SqueezeNet [43] used a point-wise convolution for feature map squeezing and used two branches,
one with 1 × 1 conv and the other with 3 × 3, for feature map expansion. Group convolution is
another commonly used method. The feature map is split into several groups. Each group passes
through standard convolutions and then concatenates back. ResNeXt [44] was a variant of ResNet
with group convolution. ShuffleNet [45] added a channel shuffle operation to the point-wise group
convolution in ResBlock, enhancing the expressive power of the network, and ShuffleNetV2 [46]
derived several practical guidelines for further improvement. An extreme case of group convolution
is depth-wise convolution, where each channel forms a group. Depth-wise separable convolutions,
introduced in MobileNet [47], consisted of a depth-wise convolution and a point-wise convolution,
where the spatial and channel correlations were separately treated. MobileNetV2 [48] introduced
an inverted residual block, which expanded input channels before depth-wise convolution and then
squeezed it back. Such a module significantly improved the network’s performance with little
overhead increase since depth-wise convolution was lightweight.

Overall from this comprehensive analysis of the representative works and recent developments
in efficient and robust deep learning (including NAS) one can conclude that the main trends are
in (1) improving the interpretability of deep learning methods, (2) designing compact and efficient
network architectures in specific pattern recognition problems, (3) designing novel adversarial at-
tacks and (4) investigating training stability. Recent interest in explainable artificial intelligence
(covered mostly in WP4), especially from governments within the European General Data Protec-
tion Regulation (GDPR), shows the vital consideration of AI’s ethics, trust, and bias. This is also
covered in WP2.

Initial Approaches for Decentralised and High-Performance Learning 17 of 52

3.2.2. Relevant publications

• X. Bai, X. Liu, Q. Liu, J. Song, N. Sebe and B. Kim, Explainable Deep Learning for Efficient
and Robust Pattern Recognition: A Survey of Recent Developments, Pattern Recognition,
vol. 120, Article 108102, December 2021 [49]
Zenodo record: https://zenodo.org/record/5442806.

3.3. Deep kernel surrogates for few-shot Bayesian hyperparameter op-
timization

Contributing partners: IBM

3.3.1. Problem Statement

NAS aims to automate the optimisation of machine learning neural architectures for given AI
tasks. However, many machine learning models have very sensitive hyperparameters that must be
carefully tuned for efficient use. Unfortunately, finding the right setting is a tedious trial and error
process that requires expert knowledge. State-of-the-art methods address this problem by providing
tools to automate hyperparameter optimization, where Bayesian optimization has become the
standard for this task [50]. It treats the problem of hyperparameter optimization as a black box
optimization problem. Here the black box function is the hyperparameter response function, which
maps a hyperparameter setting to the validation loss. Bayesian optimization consists of two parts.
First, a surrogate model, often a Gaussian Process (GP), is used to approximate the response
function. Second, an acquisition function is used that balances the trade-off between exploration
and exploitation. In a sequential process, hyperparameter settings are selected and evaluated,
followed by an update of the surrogate model.

Unfortunately, evaluating the response function is computationally intensive. As a remedy,
earlier work emphasizes the need for transfer learning surrogates which learn to optimize hyperpa-
rameters for an algorithm from other tasks. Recently, several attempts have been made to extend
Bayesian optimization to account for a transfer learning setup. It is assumed here that historical
information on machine learning algorithms is available with different hyperparameters. This can
either be because this information is publicly available (e.g. OpenML6) or because the algorithm is
repeatedly optimized for different data sets. To this end, several transfer learning surrogates have
been proposed that use this additional information to reduce the convergence time of Bayesian
optimization.

3.3.2. Methodology

In contrast to previous work, we propose to rethink Hyperparameter Optimisation (HPO) as a
few-shot learning problem in which we train a shared deep surrogate model to quickly adapt (with
few response evaluations) to the response function of a new task. We propose the use of a deep
kernel network for a GP surrogate that is meta-learned in an end-to-end fashion in order to jointly
approximate the response functions of a collection of training data sets.

We propose a new paradigm for accomplishing the knowledge transfer by reconceptualizing the
process as a few-shot learning task. Inspiration is drawn from the fact that there are a limited
number of black box function evaluations for a new HPO task (i.e. few shots) but there are ample
evaluations of related black box objectives (i.e. evaluated hyperparameters on other data sets).
This approach has several advantages. First, a single model is learned that is trained to quickly

6https://www.openml.org

Initial Approaches for Decentralised and High-Performance Learning 18 of 52

https://zenodo.org/record/5442806
https://www.openml.org

adapt to a new task when few examples are available. This is exactly the challenge we face when
optimizing hyperparameters. Second, this method can scale very well to any number of considered
tasks. This not only enables the learning from large metadata sets but also enables the problem
of label normalization to be dealt with in a new way.

Given T related source tasks and very few examples of the target task, we want to make reliable

predictions. For each of the source tasks we have observations D(t) = {(x(t)i , y
(t)
i)}i=1...n(t) , where

x
(t)
i is a hyperparameter setting and y

(t)
i is the noisy observations of f (t)(x

(t)
i), i.e. a validation

score of a machine learning model on data set t. In the following, we will denote the set of all
data points by D := ∪Tt=1D

(t). We propose to use an adaptation for GPs [51] as a surrogate model
within the Bayesian optimization framework.

A deep kernel ϕ is used to learn parameters across tasks such that all its parameters θ and ω are
task-independent. All task-dependent parameters are kept separate, which allows to marginalize
its corresponding variable out when solely optimizing for the task-independent parameters. If we
assume that the posteriors over θ and ω are dominated by their respective maximum likelihood
estimates θ

′
and ω

′
, we can approximate the posterior predictive distribution by

p(f∗|x∗ , D) =

∫
p(f∗|x∗ , θ, ω)p(θ, ω|D)dθ, ω ≈ p(f∗|x∗ , D, θ

′
, ω
′
) (1)

log p(y(1), ..., y(T)|X(1), ..., X(T), θ, ω) =

T∑
t=1

log p(y(t)|X(t), θ, ω) (2)

α−
T∑
t=1

(y(t)
T
K(t)
n

−1
y(t) + log |K(t)

n |) (3)

We estimate θ
′

and ω
′

by maximizing the log marginal likelihood for all tasks. We maximize
the marginal likelihood with Stochastic Gradient Ascent (SGA). Each batch contains data for one
task. It is important to note that this batch data does not correspond to the data in D(t), but
rather a subset of it. The training works as follows. In each iteration, a task t is sampled uniformly
at random from all T tasks. Then we sample a batch of training instances uniformly at random
from D(t). Finally, we calculate the log marginal likelihood for this batch (Equation 2) and update
the kernel parameters with one step in the direction of the gradient.

In HPO, we are only interested in the hyperparameter setting that works best according to
a predefined metric of interest. Therefore, only the ranking of the hyperparameter settings is
important, not the actual value of the metric. Therefore, we are interested in a surrogate model
whose prediction strongly correlates with the response function and the squared error is of little
to no interest for us. In practice, however, the minimum / maximum score and the range of values
differ significantly between the tasks, which makes it challenging to obtain a strongly correlating
surrogate model. The most common way to address this problem is to normalize the labels.

We propose a task augmentation strategy that addresses the label normalization issue by ran-
domly scaling the labels for each batch. Since ymin and ymax are the minimum and maximum
values for all T tasks, we can generate augmented tasks for each batch B = (xi, yi)i=1,...,b ∼ D(t),
where b is the batch size, as follows. A lower and upper limit is sampled for each sample batch,
such that l < u holds. Then the labels for that batch are scaled to this range,

l ∼ ∪(ymin, ymax), u ∼ ∪(ymin, ymax) (4)

y ← y − l
u− l

(5)

Initial Approaches for Decentralised and High-Performance Learning 19 of 52

Algorithm 1 Few-Shot GP Surrogate

Require: Learning Rate α and β, training data D, kernel k and neural network ϕ
while model invariance not achieved do

Sample task t ∼ ∪(1,T);
Estimate l and u (Equation 4)
for bn times do

Sample batch B = ((xi, yi))i=1,...,b ∼ D(t) and scale labels y using l and u;
Compute marginal likelihood L on B. (Equation 2);
θ ← θ + α∇θL;
ω ← ω + β∇ωL;

Method AdaBoost GLMNet SVM

15 33 50 15 33 50 15 33 50

Random 4.87 3.02 2.16 0.85 0.40 0.29 2.01 1.12 0.83

GP (LHS) 3.87 2.49 2.23 1.32 1.01 0.73 1.94 1.40 1.14

GP (WS) 3.25 1.66 1.02 0.86 0.36 0.24 1.10 0.81 0.65

RGPE 5.29 3.26 2.83 - - - - - -

MetaBO 5.27 3.52 1.96 11.02 10.97 10.96 12.39 12.39 11.93

ABLR 4.56 1.44 1.24 1.77 0.50 0.40 1.81 1.23 0.84

ABLR (WS) 3.17 1.72 1.17 0.54 0.36 0.29 1.47 1.08 0.87

Multi-Head
GPS (WS)

6.78 3.45 1.80 2.83 2.80 2.68 11.20 9.82 8.72

FSBO 3.10 1.13 0.80 0.42 0.22 0.16 0.79 0.51 0.36

Table 1. FSBO obtains better results for all hyperparameter optimization problems. The best results are in bold.
Results that are not significantly worse than the best are in italics. Used initialization in parentheses: Latin
Hypercube Sampling (LHS) and Warm Start (WS).

3.3.3. Experiments

We used three different optimization algorithms to compare the different hyperparameter optimiza-
tion methods: AdaBoost, GLMNet, and SVM. We created the GLMNet and SVM metadata set
by downloading the 30 data sets with the most reported hyperparameter settings from OpenML
for each problem. The AdaBoost data set is publicly available [52]. The number of settings per
data set varies, the number of settings across all tasks for the GLMNet problem is approximately
800,000. We compare the following list of hyperparameter optimization methods. Random Search
[53], GP [50], RGPE [54], MetaBO [55], ABLR [56], Multi-Head GPs and our proposed method
Few-Shot Bayesian Optimization (FSBO).

The experiments are repeated 10 times and evaluated in a leave-one-task-out cross-validation.
This means that all transfer learning methods use one task as the target task and all other tasks
as source tasks. For AdaBoost we use the same train/test split as used by [55] instead. We
report the aggregated results for all tasks within one problem class with respect to the mean of
normalized regrets. Regret is a standard common metric used within this field which measures
the difference between the reward of a possible action and the reward of the action actually taken.
The normalized regret for a task is obtained by first scaling the response function values between
0 and 1 before calculating the regret.

We conduct experiments on three different metadata sets and report the aggregated mean of

Initial Approaches for Decentralised and High-Performance Learning 20 of 52

normalized regrets in Table 1. The best results are in bold. Results that are not significantly worse
than the best are in italics. We determined the significance using the Wilcoxon signed rank test
with a confidence level of 95%. Results are reported after every 33 trials of Bayesian optimization
for GLMNet and SVM. Since AdaBoost has fewer test examples, we report its results in shorter
intervals.

Our proposed FSBO method outperforms all other transfer methods in all three tasks. Results
are significantly better except in the case of AdaBoost where GP(WS) achieves similar but on
average worse results. The results obtained for MetaBO are the worst. The problem is apparently
that the Reinforcement Learning method does not work well for larger number of trials. Also,
ABLR and the very related Multi-Head GP are not performing very well. One possible reason for
this might be because the neural network parameters are fixed which prohibits a possibly required
adaptation to the target task. The vanilla GP and its transfer variant that uses a warm start
turn out to be among the strongest baselines. This is in particular true for the warm start version
which is the second best method. This simple baseline of knowledge transfer is often not taken
into account when comparing transfer surrogates, although it is easy to implement. Due to the
very competitive results, we recommend using it as a standard baseline to assess the usefulness of
new transfer surrogates.

Figure 1 highlights the components that make significant differences to ABLR. Multi-Head GP
is a surrogate model that shares the neural network between tasks but uses a separate GP for
each task. It closely resembles the idea of ABLR but is closer to our proposed implementation of
FSBO. Starting from this configuration, we add components that eventually lead to our proposed
model FSBO. We consider Multi-Head GP (WS), a version that additionally uses the warm start
method instead of a random initialization. Multi-Head GP (fine-tune) not only updates the kernel
parameters when a new observation is received but also fine-tunes the parameters of the neural
network. Finally, FSBO is our proposed method, which uses only one GP for all tasks. We see that
all Multi-Head GP versions have trouble adapting to the target tasks efficiently. Fine-tuning the
deep kernel is an important part of learning FSBO. Although FSBO outperforms all Multi-Head GP
versions without fine-tuning, the additional use of the latter induces a significant improvement. We
analyzed the reason for this in more detail. In terms of the standard ”exploitation vs exploration”
search algorithm objectives, we observed that the learned neural network provides a strong prior
that leads to strong exploitation behavior. In other words, the neural network tends to produce

Figure 1. Comparison of the contribution of the various FSBO components to the final solution. Each component
makes its own contribution.

Initial Approaches for Decentralised and High-Performance Learning 21 of 52

similar architectures instead of exploring yet unexplored alternatives. Fine-tuning prevents this
and thus does not get stuck in local optima.

In this work, we proposed to rethink hyperparameter optimization as a few-shot learning prob-
lem in which we train a shared deep surrogate model to quickly adapt (with few response evalu-
ations) to the response function of a new task. We propose the use of a deep kernel network for
a GP surrogate that is meta-learned in an end-to-end fashion in order to jointly approximate the
response functions of a collection of training data sets. By doing so, we set the new state of the art
in transfer learning for the HPO and provide ample evidence that we outperform strong baselines
published in ICLR and NeurIPS by a statistically significant margin.

3.3.4. Relevant publications

• Martin Wistuba, Josif Grabocka, Few-Shot Bayesian Optimization with Deep Kernel Surro-
gates, Ninth International Conference on Learning Representations ICLR, 2021 [57]
Zenodo record: https://zenodo.org/record/4556929

Initial Approaches for Decentralised and High-Performance Learning 22 of 52

https://zenodo.org/record/4556929

4. AI at the Edge, Decentralised and Distributed Learning
(Task 3.5)

4.1. Overview of our AI at the edge, decentralised and distributed learn-
ing contributions

The pervasive integration of mobile devices and the internet-of-things in every aspect of people’s
lives has created new kinds of media data (e.g., social network interactions, multimedia features,
sensor readings) at unprecedented scales that reach big data and beyond [58, 59, 60, 61]. Traditional
AI training and deployment paradigms consider centralized (web) services that can be queried
through one endpoint. However, services with computationally heavy AI struggle to gather and
process the ever-expanding resources of the interconnected world [62, 63, 64, 65]. Even worse, real
world data rarely conform to data homogeneity (e.g., identically distributed data) often assumed
by machine learning model designers. These concerns have motivated the creation of new machine
learning paradigms that can cover heterogeneous global-scale data. One emerging direction, which
we follow in this task, is to share the burden of AI computations across many devices. In addition
to addressing scalability, this can also meet privacy and confidentiality requirements by either
sharing obfuscated versions of local device data with others (e.g., derivatives with additive noise)
[66, 67, 68] or not sharing any data at all. We address three ways of splitting computations across
multiple devices.

First, we take advantage of the total processing power of “edge” devices gathering data, such
as smart phones and sensors. Given that these maintain a base minimum of processing power,
accumulated computational capabilities grow proportionally to the total volume of generated data.
Thus, we propose that devices can collectively learn approximate machine learning models without
the need for central supervision by letting each device hold its own approximation of ideal models
and employing communication exchange schemes to collectively learn across models.

Second, we investigate promising methods that can be used to increase the efficiency of dis-
tributed training over clusters of high-performance workstations (usually equipped with multiple
GPUs). To this end, we consider improvements of centralized computational models that are ap-
plicable on data batches and are thus easy to compute separately on each workstation once they
are ported in a distributed training setting.

Third, we deploy pre-trained models that perform inference by processing local data inside
devices—a task that would otherwise be delegated to central services. In this direction, we tackle
inference under changing resource constraints. In particular, edge devices provide limited compu-
tational capabilities and energy [45, 69, 70, 71]. However, these constraints may change over time,
for example due to devices moving around (bandwidth changes) or when other processes start or
stop in shared computing environments. Adapting to such changes at runtime is critical for the
deployment of stable AI tools [72, 73, 74, 75, 76, 77].

Current work in T3.5 pursues the above-mentioned paradigms of offloading AI computations
to edge devices and on strategies for improving model generalization.

CERTH analysed training of AI models when edge devices are organized into unstructured peer-
to-peer communication graphs, where communications occur only between linked devices, new links
are either not formed or slowly created over time and devices are linked and communicate with
each other based on underlying relations, such as friendship or proximity. Thus, social network
overlays coincide with communication networks (e.g., social network friend messages coincide with
communication between their linked devices). Two highly interconnected AI practices were inves-
tigated to take advantage of link information: random walks across social network overlays that

Initial Approaches for Decentralised and High-Performance Learning 23 of 52

smooth information with a stochastic equivalent of exact random walks (Subsection 4.2.2) and
graph neural networks that leverage links to improve the accuracy of predictive classifiers (Subsec-
tion 4.2.3). These run on top of existing decentralized peer-to-peer network links under uncertain
link availability to perform few-shot node recommendation and classify nodes that hold few (e.g.,
one) data points each.

JR experimented with novel strategies (mini-batch trimming and random sample dropping)
aimed at increasing the generalization capability of trained neural network models (Subsection
4.3). The focus was on developing methods which are minimally invasive (e.g. do not make it
necessary to modify the network structure itself) and which could later be ported efficiently to
distributed training frameworks. Evaluations with different models on various image classifica-
tion datasets show that mini-batch trimming improves the model generalization, whereas random
sample dropping does not lead to an improvement.

IDF developed a flexible Recurrent Neural Network (RNN) that adapts to changes in compu-
tational resources by smartly limiting processed inputs (Subsection 4.4.1), as well as an improved
training procedure for flexible models based on the idea of a teacher assistant (Subsection 4.4.2).

4.2. Decentralized information diffusion and graph neural networks

Contributing partners: CERTH

4.2.1. Problem setting

We tackle the problem of classifying points of a shared feature space when each one is stored at
the device generating it, i.e. each device accesses only its own point but all devices collect the
same features. For example, mobile devices of decentralized social media users could classify user
interests based on locally stored content features, such as the bag-of-words of sent messages, and
given that some device users have disclosed their interests. We further consider devices that are
nodes of peer-to-peer networks and communicate with each other based on underlying relations,
such as friendship or proximity. In this setting, social network overlays coincide with communica-
tion networks. At the same time, social behavior dynamics (e.g. users going online or offline) could
prevent devices from communicating on-demand or at regular intervals. Ultimately, with who and
when communication takes place can not be controlled by learning algorithms. Finally, enforcing
random parameter exchanges between devices that have not established real-world connections,
such as direct messages and user-driven status updates, introduces both routing overheads and
privacy concerns. In fact, these shortcomings have motivated the introduction of peer-to-peer so-
cial network-based exchange schemes, in which user devices directly communicate only with small
subsets of linked ones.

Decentralized learning. Various schemes have been proposed for learning in environments
without a central conductor, most falling under the umbrella of gossip protocols that randomly
exchange and aggregate parameters (e.g., via averaging) between pairs of decentralized devices
[78, 79, 80, 81, 82].

Graph diffusion. Graph diffusion refers to smoothing node values (scores or representations)
across graphs by performing a weighted smoothing of other values, i.e., a type of weighted averag-
ing that depends on edge importance and how many edge hops away other nodes reside. Popular

Initial Approaches for Decentralised and High-Performance Learning 24 of 52

approaches involve exponentially decreasing the importance of nodes more hops away using among
others Markovian random walks with restart [83, 84] and heat kernel weights [85]. Modern under-
standing of this setting has evolved into graph filtering [86] that performs a node domain equivalent
of graph spectral transformations.

Graph Neural Networks (GNNs). GNNs are a machine learning paradigm in which links
between data samples7 are used to improve the predictions of base neural network models [87].
Samples are linked to form graphs based on real-world relations, and information diffusion schemes
propagate their latent attributes to neighbors. Then, they are aggregated – for example, via
averaging – and transformed with dense layers and non-linear activations to new representations
to be propagated again. This is repeated either ad infinitum or for a fixed number of steps to
combine original representations with structural information. Although propagation is similar to
decentralized learning in that nodes work independently, transformation parameters are shared and
learned across all nodes. It has been argued that the success of GNNs can largely be attributed to
the use of recurrence [88, 89] rather than end-to-end training of seamless architectures. As a result,
recent works have introduced decoupled architectures that achieve the same theoretical expressive
power as end-to-end training by training base statistical models (such as two-layer perceptrons) to
make predictions, and smoothing the latter through graph edges [90, 91].

Uncertain peer-to-peer communication. To provide a framework in which peer-to-peer
nodes learn to classify themselves, we specify a communication protocol of information exchanges.
First, we consider static matrices A with elements A[u, v] = {1 if (u, v) are linked, 0 otherwise},
where links indicate communication channels of uncertain availability. These matrices are not
fully observable by decentralized nodes (nodes are at most aware of their corresponding rows and
columns), but would be the input to equivalent centralized GNNs. Communication uncertainty is
encoded using time-evolving communication matrices Acom(t) with non-zero elements indicating
exchanges through the corresponding links:

Acom(t)[u, v] = {1 if u, v linked and communicate at time t, 0 otherwise}

To simplify the our analysis, and without loss of generality, we adopt a discrete notion of time
t = 0, 1, 2, . . . that orders the sequence of communication events.

To exchange information through channels represented by time-evolving communication matri-
ces, we use the broadly popular send-receive-acknowledge communication protocol: devices u (in
our case, these are nodes of the peer-to-peer network) are equipped with identifiers u.id and oper-
ations u.send, u.receive and u.acknowledge that respectively implement message generation,
receiving message callbacks that generate new message to send back and acknowledging that sent
messages have been received. Usage of these operations is demonstrated in Algorithm 2.

Algorithm 2 Send-Receive-Acknowledge protocol

Inputs: devices u ∈ V with identifiers u.id, time-evolving Acom(t) : V × V → R
for t = 0, 1, 2, . . . do

for all (u, v) such that Acom(t)[u, v] = 1 do
message← u.send(v.id)
reply← v.receive(u.id, message)
u.acknowledge(v.id, reply)

7In our setting there is 1-1 correspondence between samples and graph nodes.

Initial Approaches for Decentralised and High-Performance Learning 25 of 52

4.2.2. Uncertain peer-to-peer random walk diffusion

Information diffusion is a popular graph analysis method, in which prior scores of nodes are prop-
agated (e.g. averaged) through graph neighbors. Our analysis tackles the following generalized
form, that obtains node values π∞ in the form of vectors in a Hilbert space, where π∞[u] corre-
spond to eventual values of nodes u, by accounting for different types of matrix normalization and
ways to bias towards initial node values π0:

π∞ = (I − aD−dADd−1)−1Pγπ0, (6)

where I is the unit matrix, Pγ = diag({1− a if u ∈ Vtrain, 1− γ otherwise}u) is a diagonal matrix
that scales differently non-training and training node personalization, D = diag([

∑
v A[u, v]]u) is a

diagonal matrix of node degrees and a ∈ [0, 1] is a diffusion parameter. For γ = a, this is equivalent
to constraining the personalized PageRank scheme [84] with normalized communication matrices
D−dADd−1 that preserve original node representations πn[v] = π0[v] assigned to training nodes
v ∈ Vtrain. This closed form is equivalent to restoring training node scores after each power method
iteration πn+1 = aD−pAD1−pπn + (1− a)π0, where each iteration step is a specific type of graph
convolution. On the other hand, for γ = 1 only the personalization π0[v] of training nodes v is
diffused in the graph.

To set up a decentralized implementation of personalized PageRank, we introduce a theoretical
construct we dub decentralized graph signals. This describes decentralized operations in peer-to-
peer networks while accounting for personalization updates over time, in case these are trained
while being diffused. Our structure is defined as matrices S : V × V → RF with multidimensional
vector elements S[u, v] ∈ RF (in our case F is the number of classes) that hold in devices u the
estimate of device v representations. Rows S[u] are stored on devices u and only cross-column
operations are impacted by communication constraints.

We consider a scheme that updates decentralized graph signals S(t) at times t per the rules:

S(t)[u, v] = S(t− 1)[u, v] +Acom(t)[u, v](S(t−1)[v][v]D[u,u]p − S(t− 1)[u, v])

S(t)[u, u] = Pγ [u, u]S0(t)[u] + a
∑
v

Amasked[u,v]
D[u,u]1−p S(t)[v][v]

(7)

where S0(t)[u] ∈ RF are time-evolving representations of nodes u. The first of the above equations
describes node representation exchanges between devices based on the communication matrix,
whereas the second one performs a local update of personalized PageRank estimation given the
last updated neighbor estimation that involves only data stored on device u. In [92] we show that,
if limt→∞ S0(t)[u] = π0[u] is bounded and converges in distribution with linear rate then expected
error between limt→∞ S(t)[u, u] and π∞[u] satisfying Equation 6 converges in distribution with
linear rate, as long as there is a lower bound to the communication probability between devices,
i.e., they never stop communicating completely.

4.2.3. Uncertain peer-to-peer decoupled GNNs

When network nodes corresponding to data points are linked based on social relations, a lot of
information resides in their link structure in addition to data features. For instance, social net-
work nodes one hop away often assume similar classification labels, a concept known as homophily
[93, 94]. Yet, existing decentralized learning algorithms do not naturally account for informa-
tion encapsulated in links, as they are designed for structured networks of artificially generated
topologies. In particular, decentralized learning often focuses on creating custom communication
topologies that optimize some aspect of learning [82] and are thus independent from data. Our

Initial Approaches for Decentralised and High-Performance Learning 26 of 52

investigation differs from this assumption in that we classify data points stored in decentralized
devices that form unstructured communication networks. In these, links capture real-world activity
(e.g. social interactions) unknown at algorithm design time and produce unstructured topologies.

Let us consider base classifiers Rθ(·) with parameters θ. These are trained on a set of labeled
nodes Vtrain to produce predictions ŷ = Rθ(x) from feature vectors x, where desired predictions
one-hot encode classification labels. Regardless of how these are trained, peer-to-peer network links
adhering to the principle of homophily, where similarly-attributed nodes tend to be connected to
each other, can be leveraged to improve predictions. For neural networks, this is achieved by
transforming them to GNNs that incorporate graph convolutions in multilayer parameter-based
transformations both during training and during predictions.

Unfortunately, graph convolutions aggregate latent node neighbor representations but uncertain
availability means that either the last retrieved representations should be used or node features and
links from many hops away should be stored locally for in-device computation of graph convolutions.
In the first case, convergence to equivalent centralized model parameters could be slow, since
learning would impact neighbor representations only during communication. In the second case,
multilayer architectures aiming to broaden node receptive fields from many hops away would end
up storing most network links and node features in each node.

To avoid these shortcomings, we build on decoupled GNNs, which separate the challenges
of training base classifiers with leveraging network links to improve predictions. To manipulate
learning primitives, we organize base predictions of node features X, where rows X[u] hold the
features of nodes u, into matrices Rθ(X) with rows holding the predictions of respective feature
rows Rθ(X)[u] = Rθ(X[u]). Predicted classes would be obtained by argmaxRθ(X)[u]. If classifiers
are trained for the features and labels of node sets Vtrain, we build on the FDiff-scale decoupled
GNN’s description [90], which we transcribe as:

Ŷ = (I − αD−0.5AD−0.5)−1Pα
(
Rθ(X) + (1− α)s(I −AmaskedD−1)−1P1(Y −Rθ(X))

)
(8)

where masked adjacency matrix elements Amasked[u, v] = {1 if u = v and u ∈ Vtrain, A[u, v] if u 6∈
Vtrain, 0 otherwise} (these are not symmetric) prevent diffusion from affecting training nodes, Pγ =
1

1−αdiag({1− α if u ∈ Vtrain, 1− γ otherwise}u) and α ∈ [0, 1], s ∈ R are hyperparameters
This scheme requires the training of a base predictor and the diffusion of predictions through the

graph with Equation 8. The latter comprises two random walk diffusion steps adhering to the form
of Equation 6 for parameters (γ, d, α) equal to (α, 0.5, α) and (1, 0, 1) respectively, applied on adja-
cency matrices A and their modified versions Amasked (with a respective communication matrix).
Thus, decentralized graph signals can approximate numerical outputs per Equation 7. Notably,
given that the base learning algorithm exhibits linear convergence in distribution, this property
also transfers to the decentralized graph signal computations and hence the overall decentralized
graph neural network also converges at a linear rate.

4.2.4. Experiments

To compare the ability of peer-to-peer learning algorithms to make accurate predictions, we ex-
periment on three datasets that are often used to assess the quality of GNNs [95], a pre-processed
version of which alongside common train-validation-test sets of nodes we retrieve using the pro-
gramming interface of the publicly available Deep Graph Library [96]. These are the Citeseer [97],
Cora [98] and Pubmed [97] social graphs for document classification based on textual features and
relations between documents. For these, we simulate peer-to-peer networks with the same nodes
and links as the datasets and fixed probabilities for edge communication at each time step by
uniformly sampling them from the range [0, 0.1] (similar results are obtained for communication

Initial Approaches for Decentralised and High-Performance Learning 27 of 52

rates sampled from different intervals). We repeat experiments 5 times and report classification
accuracy on test labels after 1000 time steps (all algorithms converge well within that time).

Experiments employ three base classifiers: (a) MLP – a multilayer perceptron often employed
by GNNs [99, 90]. This consists of a dense two-layer architecture starting from a transformation of
node features into 64-dimensional representations activating ReLU outputs and an additional dense
transformation of the latter whose softmax aims to predict an one-hot encoding of classification
labels. (b) LR – a simple logistic regression classifier. (c) Label – classification that repeats training
node labels. If no diffusion is performed, this provides random predictions for test nodes.

MLP and LR are trained towards minimizing a cross-entropy loss with an Adam optimizer
[100, 101]. We set learning rate 0.1L, where L is the number of dense layers, and maintain the
default momentum parameters proposed by the optimizer’s original publication. For MLP, we
use 50% dropout for the dense layer to improve robustness and for all classifies we L2-regularize
dense layer weights with 0.0005 penalty. We do not perform hyperparameter tuning, as further
protocols would be needed to make peer-to-peer nodes learn a common architecture optimal for
a set of validation nodes, for example by porting HPO of Subsection 3.3 to the decentralized
setting. For FDiff-scale hyperparameters, we select a personalized PageRank restart probability
often used for graphs with several thousand nodes 1 − α = 0.1 and equal prediction and error
scale parameter s = 1, where the latter is selected so that it theoretically satisfies the heuristic of
perfectly reconstructing the class labels of training nodes.

Table 2 compares the accuracy of base algorithms vs. their augmented predictions with the
decentralized p2pGNN and a fully centralized implementation of FDiff-scale. The last two schemes
implement the same architecture and differ only on whether they run on peer-to-peer networks or
not respectively. Comparisons span pre-trained versions of classifiers and ones fully decentralized
trained with gossip protocols, where the latter make use of both training and validation nodes,
as it is not possible to use validation nodes for robust stopping point detection. In both cases,
diffusion makes use of both training and validation nodes, as this does not affect base classifier
training. Fully centralized GNNs always use the pre-trained base classifiers, since these are the
centralized counterpeparts of gossip training.

Overall, experiment results indicate that, at least for pre-trained classifiers, p2pGNN success-
fully applies GNN principles to improve base classifier accuracy, whereas gossip classifiers tend to
“leak” the graph structure to parameters and hence are sometimes similar to simple label diffusion.
Mitigiating this last issue is a subject of our ongoing research. Importantly, although neighbor-
based gossip training of base classifiers on both training and validation nodes outperforms models
pre-trained on only training nodes (in which case validation nodes are used for early stopping),
decentralized graph diffusion of the latter exhibits the highest accuracy across most combinations
of datasets and base classifiers.

4.2.5. JGNN: a library to support learning on edge devices

Concepts discussed throughout section 4.2, such as gossip learning, require the ability to perform
AI computations on edge devices. Existing decentralized AI frameworks that are catered for this
setting, such as TensorFlow lite [102], typically follow a pipeline where models are pre-trained
in computationally-capable infrastructure and are only deployed to perform inference on devices
without being able to learn there. This covers in large part the requirements of the PretrainedDiff
model presented in the previous section (decentralized graph signals are easy to implement and
perform lightweight operations during communication), but does not support settings where decen-
tralized AI originally designed for GPU-savvy systems is trained within edge devices of restricted
resources, for example to perform gossip learning. This prospect is particularly important in fully
decentralized applications, in which pre-trained models can not be hosted in one place, for example

Initial Approaches for Decentralised and High-Performance Learning 28 of 52

Table 2. Comparing the accuracy of different types and training schemes of base algorithms and their combination
with the diffusion of p2pGNN. Accuracy is computed after 1000 time steps and averaged across 5 peer-to-peer
simulation runs.

Base p2pGNN Fully Centralized GNN

Citeseer Cora Pubmed Citeseer Cora Pubmed Citeseer Cora Pubmed

Pre-trained

MLP 52.3% 54.9% 70.9% 67.8% 81.5% 76.0% 69.0% 84.0% 81.2%

LR 59.4% 58.7% 72.2% 70.5% 82.0% 77.3% 70.3% 85.7% 81.5%

Gossip

MLP 63.1% 66.3% 74.9% 61.3% 80.8% 78.0% 69.0% 84.0% 81.2%

LR 61.8% 79.9% 78.7% 61.4% 80.8% 78.7% 70.3% 85.7% 81.5%

Labels 15.9% 11.6% 22.0% 61.1% 80.8% 71.5% 61.5% 78.9% 78.6%

due to limited or no access to global resources by devices organized into peer-to-peer networks.
To accommodate these requirements and help move our research from controlled simulation

environments to actual operational settings, we developed appropriate programming tools that
enable online learning on edge devices. In particular, we developed a library, called Java Graph
Neural Networks (JGNN – source code link in Subsection 4.2.7), which implements popular ma-
chine learning principles in Java. As such, it can be run on the billions of systems hosting the
language’s virtual machine (JVM)8, such as micro-controllers and Android devices. Critically,
JGNN is implemented on native Java and without external dependencies and hence mitigates
application size. It can also run on devices that can execute wrapped lower-level binaries (e.g.
precompiled processor or GPU instructions). Although the library does not account for GPUs, it
supports parallelization.

We expect this library to be used to train either small-scale models or local fragments of larger
models distributed across devices. Hence, our main focus lies on minimizing memory footprints by
providing tensor implementations that can directly expose subtensors. For example, it is possible to
extract batches from training data and learn from those without allocating additional memory (save
from a small overhead of creating wrapper objects and space pre-allocated for gradient storage).
At the same time, we enable processor parallelization using Java’s threading capabilities.

Furthermore, JGNN provides a true high-level abstraction of sparse representations that work
interchangeably with dense matrices, a feature that traditional machine learning frameworks often
struggle to provide, given the uncertainty of whether results should be sparse or dense. To work
around this issue, we provide a conditional instantiation mechanism that automatically determines
whether dense or sparse representations should be adopted depending on the order, data types of
operands and which operation is performed, with plans to enrich this behavior with more policies,
such as expected result sparsity. This way, AI systems can focus on defining their models and
delegate data structure handling to the library instead of programmers developing them. It must
be stressed that supporting sparse tensors is of paramount importance for the definition of GNNs,
where using sparse matrices to represent graphs allow the matrix multiplications corresponding to
graph convolutions to be computed in times that scale only linearly with the number of edges.

Finally, JGNN allows textual definitions of machine learning models, such as neural networks
and GNNs, that are parsed by a model builder to appropriately instantiate machine learning
primitives. This helps avoid lengthy definitions, for which Java code is notorious, but which do
not suit the experimental needs of the machine learning community. For example, in Figure 2 we
present how a simple logistic regression model can be defined in JGNN with only declaration of

8https://www.oracle.com/java/moved-by-java/timeline

Initial Approaches for Decentralised and High-Performance Learning 29 of 52

https://www.oracle.com/java/moved-by-java/timeline

its variables and formula and initialization of its parameter. Ongoing work in the library focuses
on providing models and datasets out-of-the-box to facilitate ease of experimentation.

Figure 2. Definition of a logistic regression model using JGNN with input variable x, output variable yhat and
initialized parameters w1.

4.2.6. Relevant preprints (to be submitted for publication)

• E. Krasanakis, S. Papadopoulos, I. Kompatsiaris, A. Symeonidis. pygrank: A Python Pack-
age for Graph Node Ranking, arXiv preprint, arXiv:2110.09274, 2021 [103]

• E. Krasanakis, S. Papadopoulos, I. Kompatsiaris. p2pGNN: A Decentralized Graph Neural
Network for Node Classification in Peer-to-Peer Networks, arXiv preprint, arXiv:2111.14837,
2021 [92]

4.2.7. Relevant software and/or external resources

• The JGNN library for native Java implementation of graph neural networks can be found in
the public repository: https://github.com/MKLab-ITI/JGNN

• Implementation of decentralized graph neural networks and simulated experiments in Python
supporting p2pGNN can be found in the public repository: https://github.com/MKLab-

ITI/decentralized-gnn

• The gnn-test framework used to compare graph neural network approaches in Python over
a tensorflow backend can be found in the public repository: https://github.com/MKLab-

ITI/gnn-test

4.3. Towards efficient distributed training

Contributing partners: JR

4.3.1. Introduction

As can be seen from the evolution of popular distributed training frameworks like DeepSpeed9,
over time these “pick up” successful general strategies that improve training and port them to
the distributed setting to also improve performance there. For example, during the evolution of
DeepSpeed, popular adaptive gradient optimizer like Adam [104], and recently strategies from
curriculum learning have been added10, although only for the specific task of training Natural
Language Processing (NLP) models. Similarly, JR follows a two-stage approach, where we first
research novel general strategies for improving training and which can be ported efficiently to
distributed training scenario, and will later on will port the strategies that have been identified

9https://github.com/microsoft/DeepSpeed
10https://www.deepspeed.ai/tutorials/curriculum-learning/

Initial Approaches for Decentralised and High-Performance Learning 30 of 52

https://github.com/MKLab-ITI/JGNN
https://github.com/MKLab-ITI/decentralized-gnn
https://github.com/MKLab-ITI/decentralized-gnn
https://github.com/MKLab-ITI/gnn-test
https://github.com/MKLab-ITI/gnn-test
https://github.com/microsoft/DeepSpeed
https://www.deepspeed.ai/tutorials/curriculum-learning/

as successful to distributed systems. In the following, we describe our initial work, which deals
with a novel “mini-batch trimming” strategy and belongs to the field of curriculum learning. This
strategy improves the training (as can be seen in the experiments), and therefore we plan to port
it to a distributed training framework in the future.

Training a neural network model which generalizes well (has good performance on unseen data)
is a highly desirable property, but not easy to achieve. Nowadays, model training often employs
adaptive gradient methods, such as the Adam optimizer [104], as they exhibit practical advantages
(less sensitive to weight initialization and hyperparameters) compared with mini-batch Stochastic
Gradient Descent (SGD). On the other hand, their generalization capabilities has been observed
to not always be as good as SGD [105].

We propose a simple strategy which we call mini-batch trimming to increase the generalization
capability (measured for image classification problems as the error of the final model on the test
dataset) of trained models. The strategy is easy to integrate into existing training pipelines, does
not need modification of model structures and is independent of the employed optimizer (can be
used for both SGD and Adam-like methods). Its motivation lies in the fact that humans learn
subjects (e.g. algebra) ‘from easy to hard’, i.e., we first learn basic concepts of the subject matter
and only later move to more advanced ones. In the same way, we propose that optimizer should
focus on the more difficult samples in the dataset only in the later training stages. For example, in
the context of image classification, images that are harder to classify correctly will only be involved
in the later stages of training.

Our strategy is similar to curriculum learning methods and importance sampling methods. In
curriculum learning (see the survey in [106]), during training the samples are presented in a more
meaningful order (e.g. from easy to hard) instead of the default random order. Importance sam-
pling methods do not treat all samples in a dataset in the same way, but instead bias the selection
of samples via a certain criterion. Characteristically, in [107] sampling is used to overweight highly
representative samples during training. A disadvantage of this approach is that it has a compli-
cated workflow, which involves density clustering (via the t-SNE algorithm [108]) in the sample
space.

In the following subsections, we will describe our proposed mini-batch trimming strategy (Sub-
section 4.3.2) and present experiments on standard image classification problems which demon-
strate that the strategy leads to models which generalize better (Subsection 4.3.3). We finally
investigate another strategy (random sample dropping – Subsection 4.3.4) that did not provide
benefits with respect to model generalization.

4.3.2. Mini-batch trimming

The training of a neural network model is usually done iteratively. In each iteration, a mini-batch
consisting of B samples (where B is typically 64 or 128) is drawn randomly from the training set,
the mean loss for the mini-batch is calculated in the forward pass and in the backward pass the
gradient of the mean loss is utilized to update the model weights.

In order to focus more on the harder samples in the mini-batch, we propose a strategy which
we call mini-batch trimming. As we cannot quantify the ‘hardness’ of a sample φ exactly, we take
the per-sample loss L(φ) as an estimate of its hardness. This makes sense, as the more difficult
samples in the training set typically also have a higher loss. We modify the forward pass now in
the following way: First the per-sample loss L(φ) is calculated for all samples in the mini-batch.
Next all samples in the mini-batch are sorted using the per-sample loss as criterion. The mean
loss is now calculated only from a fixed fraction of the samples in the mini-batch with the highest
per-sample loss. So we are calculating a kind of trimmed mean instead of the typical mean. For
selecting the fraction p of the samples with the highest loss the PyTorch framework provides the

Initial Approaches for Decentralised and High-Performance Learning 31 of 52

torch.topk operator, which is also differentiable. Example code demonstrating its usage can be
seen in Listing 1.

’p ’ (in range [0 , 1]) i s the f r a c t i o n o f the samples
in the mini−batch to be kept
’ l o s s ’ i s the l o s s vec to r conta in ing the l o s s va lue
f o r each sample in the mini−batch
’ loss t r immed ’ i s the trimmed l o s s to be returned
loss t r immed = torch . topk (l o s s , round(p ∗ l o s s . s i z e () [0]) ,

sorted = False , dim = 0) [0])

Listing 1. Example python code showing how to implement mini-batch trimming.

In this way, in each training iteration the update of the model weights is biased towards the
more difficult samples. In the fashion of curriculum learning, the fraction p is linearly decreased
during training. For the first epoch p has the value 1.0 (take all samples in mini-batch into account),
whereas in the last epoch p is set to 0.2 (focus only on the 20 % samples in the mini-batch with
the highest loss). Experiments have shown that this is a sensible choice.

Note that for neural network models without batch-normalization layers (e.g. transformer
architectures for natural language processing), mini-batch trimming brings also a runtime im-
provement, as the backward pass then depends only on a part of the mini-batch. For models
with batch-normalization layer (like most CNNs) this is not the case, because for these models the
forward pass depends on the whole batch.

4.3.3. Experiments and evaluation

For the experiments and evaluation, we employ three standard datasets for image classification:
SVHN 11, CIFAR-10 and CIFAR-100 12. The datasets consist of 32x32 pixel RGB images, which
belong to either 10 classes (SVHN and CIFAR-10) or 100 classes (CIFAR-100). We use the Adam
optimizer, with learning rate set to 0.001 and weight decay set to 0.0001. The mini-batch size
is 128 and training is done for 150 epochs, with the learning rate decayed by a factor of 0.5 at
epochs 50 and 100. We perform the experiments with two popular neural network architectures
for computer vision, Resnet-34 [109] and Densenet-121 [110].

To measure how well the trained model is able to generalize, we utilize the top-1 classification
error of the final model on the test set (which of course has not been seen during training). For each
configuration, we do 10 different runs with random seeds and take the average of these 10 runs.
We compare the standard training with the variant with mini-batch trimming enabled. Results
of the experiments can be seen in Table 3. The evaluation shows that mini-batch trimming is
able to improve the generalization capability of the model in nearly all cases, except for one case
(Densenet-121 architecture on CIFAR-10 dataset) where there is a slight decrease in the model
performance.

4.3.4. Random sample dropping

We researched also another novel strategy termed random sample dropping. This strategy works
by dropping in each epoch randomly a certain percentage of samples, and filling the missing ones
up by sampling randomly from the dataset (which is equivalent to sampling with replacement).
This means that it is not guaranteed that each training sample is taken into account during the
training step for one epoch. Instead, it may occur for that epoch that a specific training sample

11http://ufldl.stanford.edu/housenumbers/
12https://www.cs.toronto.edu/~kriz/cifar.html

Initial Approaches for Decentralised and High-Performance Learning 32 of 52

http://ufldl.stanford.edu/housenumbers/
https://www.cs.toronto.edu/~kriz/cifar.html

Table 3. Comparison of training with mini-batch trimming disabled/enabled for various network architectures
anddatasets. The first value in each cell is the average test error (in percent, averaged over 10 runs) with
mini-batchtrimming disabled, the second value is with mini-batch trimming enabled. The lower value is marked in
bold.

Dataset ResNet-34 DenseNet-121

SVHN 5.87 / 5.76 4.62 / 4.42

CIFAR-10 17.43 / 17.01 10.10 / 10.19

CIFAR-100 48.19 / 47.72 32.95 / 32.18

is not used at all, or used exactly once, or even twice or more often. So we are increasing the
variance in the set of training samples used in one epoch, which we assumed to be beneficial
for the generalization of the trained network model. Unfortunately, preliminary evaluations on
standard image classification datasets show that this strategy does not bring tangible benefits in
terms of generalization and even slightly reduces the accuracy of trained models.

4.3.5. Relevant publications

• H. Fassold, Some like it tough: Improving model generalization via progressively increasing
the training difficulty, ASPAI, 2021
Zenodo record: https://zenodo.org/record/5596848 [111]

4.3.6. Relevant software and/or external resources

• A Python implementation of mini-batch trimming can be found on the public repository:
https://github.com/hfassold/mbtrim

4.4. Resource aware models for the edge

Contributing partners: IDF

4.4.1. Resource adaptable RNN

Recurrent Neural Networks (RNNs) are neural networks that process sequences of inputs, such
as frames of videos. Existing approaches for RNNs on limited computational resources typically
focus on minimizing resource usage and their overwhelming majority try to maintain accuracy
or reach a set efficiency. We, on the other hand, are interested in constructing models that can
adapt to changing resource constraints. ThRNN [77] is a RNN architecture that aims to control
computation time by not processing some inputs. The trade-off between the average accuracy and
the average number of updates can be modified during inference by changing a single parameter
thr. However, ThrRNN optimizes computational cost on average over sequences. It is therefore
unable to meet strict constraints that would prevent models from exceeding computational budgets.
Consequently, optimized models can shut down or exhibit output delays. On the other hand,
we present a new approach, called Skip-Windows (SkipW), that tackles this problem by strictly
enforcing computational constraints over subsequences of inputs.

In a nutshell, SkipW forces RNNs to process at most K out of every non-overlapping sequence of
L inputs. It can be wrapped around any RNN cell S. It uses a conditional computation mechanism
to skip some updates. Before any new L-size window of inputs, a L-size vector ũW is computed.
ũW [i] can be seen as the importance of input i in the window. Then, the architecture includes a

Initial Approaches for Decentralised and High-Performance Learning 33 of 52

https://zenodo.org/record/5596848
https://github.com/hfassold/mbtrim

selectK mechanism. This function takes as input the vector ũW and outputs the vector ũKW , setting
L−K elements to a value that ensures the associated inputs are not processed. Therefore, it forces
the RNN cell to skip (L − K) out of every L inputs. Appropriately selecting K ensures a strict
upper bound on the computational cost of the model for a sequence and for each subsequence.
As an example, the inputs associated to the K highest values in ũW can be processed. This
architecture is illustrated in Figure 3.

In terms of accuracy, SkipW compares well to existing methods. To show this, we evaluated
it on a Human Activity Recognition (HAR) from video task. The accuracy and computational
cost (measured in terms of input processed) is reported for various approaches and configurations
in Figure 4. It can be seen that large window sizes offer good trade offs when changing K. For
example, for L = 16, reducing K from 4 to 1 more than halves the number of inputs processed
for a drop of 3.6% in accuracy. The trade-offs achieved by SkipW are better than what could
be achieved with ThrRNN (discussed above) and SkipRNN, another baseline that subsamples
inputs but cannot be adapted in real time. This figure also includes a comparison with two naive
subsampling strategies selecting a set number of inputs. Random subsampling samples inputs
based on a uniform distribution. Periodic subsampling selects them at regular interval. Both naive
strategies are worse than SkipW.

SkipW was also better or similar to the baselines on two other data sets (Adding Task and
IMDB) while it was worse than non-adaptive models but better than ThrRNN on a fourth one
(sequential MNIST). We have also implemented SkipW on small hardware to showcase its perfor-
mance in the setting it is designed for. We implement the full HAR service, from images to activity
recognition, on two Nvidia Jetson platforms. Experiments confirm that SkipW can lead to faster
processing and to energy savings. The latter is shown in Figure 5.

4.4.2. Inplace knowledge distillation with teacher assistant

A popular strategy to construct resource-adaptable deep neural networks is to construct a set of
nested models [72, 73, 74, 75, 112, 113, 114]. In other words, such a flexible model is constituted
of several models (one per resource/performance operating point) that are embedded one into
another like Matryoshka dolls with strong parameters sharing: one largest model and several sub-
models. At the inference, a suitable sub-model corresponding to the available resources may be
instantly extracted and deployed, and, thanks to the strong parameters sharing, the full model

Figure 3. Skip-Window cell implementation example.

Initial Approaches for Decentralised and High-Performance Learning 34 of 52

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Inputs processed (%)

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

K=[1-4]K=1

K=[3-8]

K=1

K=[3-16] thr=0.5 trade-off SkipRNN
random subsamp.
periodic subsamp.
SkipW =1e-2, L=4
SkipW =1e-2, L=8
SkipW =2e-2, L=16
ThrRNN =1e-1

Figure 4. SkipW achieves both a better accuracy and a lower computational cost than baselines on a HAR task.
For random subsampling, the shaded area corresponds to 3 times the standard deviation on each side of the mean
value (50 evaluations).

3 , 0.1 2 , 0.1 1 , 0.5 1 , 0.6
K , thr

0

1000

2000

3000

4000

Po
w

er
 c

on
su

m
pt

io
n

(m
W

)

Platform = Jetson Nano

3 , 0.1 2 , 0.1 1 , 0.5 1 , 0.6
K , thr

Platform = Jetson TX2

Figure 5. Average energy consumption for the analysis of a HAR sequence using SkipW and PoseNet (MobileNet
0.75) on a Jetson Nano and a Jetson TX2. The dotted line corresponds to the energy level for no activity and the
dashed one to the maximum instantaneous level measured when models are running.

may be efficiently transmitted and stored, as compared to a dummy solution of training several
independent models (one per resource/performance operating point). We have developed a better
approach to train such nested models.

Let flexible DNN include n sub-models enumerated in the order of their sizes (the largest
network is indexed by n). Let vector as[i] or at[i] be the logits of the i-th model (i = 1, . . . , n).
The most conventional way to train the flexible DNN consists in a supervised joint learning of all
sub-networks as:

Lflex =

n∑
i=1

LCE(as[i], yr), (9)

where LCE(·, ·) is the cross-entropy loss.
It was proposed in [74] to still train the sub-models jointly, but not all of them in a completely

supervised manner: the largest n-th model is trained in a supervised way, while all other sub-
models are distilled from the largest model. The resulting in-place knowledge distillation (IPKD)

Initial Approaches for Decentralised and High-Performance Learning 35 of 52

optimization loss writes

LflexIPKD = LCE(as[n], yr) + (1− λ)

n−1∑
i=1

LCE(as[i], yr) + λ

n−1∑
i=1

LKD(as[i], at[n]), (10)

where
LKD(as, at) = τ2DKL (softmax(as/τ), softmax(at/τ)) (11)

and DKL is the Kullback-Leibler (KL) divergence. In-place in IPKD refers to the fact that the KD
is now performed jointly with a strong parameters sharing between the sub-models. It was shown
in [74] for slimmable networks that the IPKD training outperforms the conventional training (9).
The IPKD strategy was then adopted in [72, 75, 113, 114].

In this work, we build on the idea of KD with teacher assistant [115] to improve the IPKD
training of flexible models. Indeed, in IPKD all sub-models are distilled from the biggest one. It
was remarked in [115] that when the gap in model size between the teacher and the student is
big enough, distilling the knowledge directly from the teacher might be sub-optimal. To overcome
this issue, the authors of [115] introduced an intermediate teacher assistant model that is first
learned by the teacher and then teaches the student. This approach has been shown [115] to lead
to a better student model performance. Based on this approach, we propose two methods to train
flexible models.

We first introduce the IPKD with one Teacher Assistant (IPKD-TA-1), where each sub-model
is taught by another sub-model that is just next to it from the top. This leads to the following
re-formulation of IPKD loss (10):

LflexIPKD−TA−1 = LCE(as[n], yr) + (1 − λ)

n−1∑
i=1

LCE(as[i], yr) + λ

n−1∑
i=1

LKD(as[i], at[i + 1]). (12)

Another strategy we introduce and investigate is the IPKD with multiple teacher assistants
(IPKD-TA-M), where each sub-model is taught by all the larger sub-models 13. This is achieved
by writing the corresponding loss as follows:

LflexIPKD−TA−M = LCE(as[n], yr) + (1− λ)

n−1∑
i=1

LCE(as[i], yr)+

+ λ

n−1∑
i=1

1

n− i

n∑
j=i+1

LKD(as[i], at[j]), (13)

where the weights 1
n−i (such that

∑n
j=i+1

1
n−i = 1) are introduced in order to re-balance the

impacts of the teacher assistants, since the number of teacher assistants varies from one sub-model
to another.

We evaluated these approaches on several flexible models and data sets. Figure 6 is a represen-
tative example, obtained using MSDNet [112] on the CIFAR-10 data set. This particular model
can produce an output at multiple locations (called exit points) in the network. The resulting
accuracy is reported for every such exit point in the network. We may see that, as compared to
the baseline supervised training without distillation, the investigated IPKD training improves the
results.

13In general each sub-model can be taught by a subset of larger sub-models.

Initial Approaches for Decentralised and High-Performance Learning 36 of 52

Figure 6. Results in terms of classification accuracy for the proposed training approach, using a MSDNet model
on CIFAR-10.

4.4.3. Relevant publications

• T. Mayet, A. Lambert, P. Le Guyadec, F. Le Bolzer, and F. Schnitzler. SkipW: Resource
adaptable RNN with strict upper computational limit, ICLR, 2020 [116]
Zenodo record: https://zenodo.org/record/4911371

• A. Ozerov and N. Q. K. Duong. Inplace knowledge distillation with teacher assistant for
improved training of flexible deep neural networks, EUSIPCO, 2021 [117]
Zenodo record: https://zenodo.org/record/5047247

Initial Approaches for Decentralised and High-Performance Learning 37 of 52

https://zenodo.org/record/4911371
https://zenodo.org/record/5047247

5. Quantum Assisted Reinforcement Learning (Task 3.8)

In recent years, the technological capability to control a single Quantum system has opened the
possibility of using these systems as computers. With this approach, we have access to a novel
model of computation, which for some tasks has been proven to outperform conventional algo-
rithms. While the full implementation of a Quantum computer is still far from being a complete
reality, preliminary devices are already operational in a number of physics laboratories. Some
private companies allow remote access to this technology, allowing researches to experiment with
novel approaches to established computational problems.

Among relevant applications of Quantum computers, Quantum Machine Learning studies the
utility of these devices to process information and perform training and generative tasks. The
computational requirements of Machine Learning motivate this approach, as the computational
advantage of Quantum resources could boost fundamental operations.

The research performed in this task contributes to the field of Quantum Machine learning, and
brings insight into applications of Quantum computers to perform Machine Learning with either
classical or Quantum data. In particular, it focuses in fundamental operations designed as algo-
rithms executed on Quantum computers. Through a collaboration with experimental partners, the
developments of this tasks are demonstrated on real devices, going beyond the stage of theoretical
proof of concept.

5.1. Overview of quantum assisted reinforcement learning contributions

A single-qubit circuit can approximate any bounded complex function stored in the degrees of free-
dom defining its quantum gates. The single-qubit approximant presented in this work is operated
through a series of gates that take as their parameterization the independent variable of the target
function and an additional set of adjustable parameters. The independent variable is re-uploaded
in every gate, while the parameters are optimized for each target function. The output state of
this quantum circuit becomes more accurate as the number of re-uploadings of the independent
variable increases, i.e., as more layers of gates parameterized with the independent variable are
applied. In this work, we provide two different proofs of this claim related to both Fourier series
and the Universal Approximation Theorem (UAT) for neural networks, and we benchmark both
methods against their classical counterparts. We further implement a single-qubit approximant
in a real superconducting qubit device, demonstrating how the ability to describe a set of func-
tions improves with the depth of the quantum circuit. This work shows the robustness of the
re-uploading technique on Quantum Machine Learning.

5.2. Universal approximation of functions with Quantum computers

Contributing partners: BSC

5.2.1. Introduction

We present two independent proofs that any bounded complex function can be approximated in
a convergent way by a quantum circuit acting on one qubit, constituting a single-qubit universal
approximant. The two methods derived allow using a Quantum circuit to approximate arbitrary
mathematical functions, and provide two constructive methods to build the corresponding Quan-
tum circuit. This demonstrates the precise representation power of a single-qubit circuit, which
increases as more layers are added. The essential element of the present construction is the re-
uploading of the input variables along the action of the quantum gates. Thus, in analogy to neural

Initial Approaches for Decentralised and High-Performance Learning 38 of 52

networks, query complexity is attached to accuracy. The first way to prove this result is to make
contact with harmonic analysis. This is a natural step as single-qubit gates are expandable in
Fourier series that can be rearranged to fit existing theorems. The second method is analogous to
the UAT using a translation into quantum circuits. A series of specific gates leads to an output
state that approximates functions uniformly. In both cases, the quantum theorems inherit the
applicability and characteristics of their classical counterparts.

We provide numerical benchmarks of these theorems computed via classical simulation of quan-
tum computers. Our simulations show how an increasing query complexity can improve the ac-
curacy of the approximation of a number of test functions. The way a single-qubit circuit can
approximate any function in an experimental setup by using a superconducting qubit is explic-
itly illustrated. Experimental results confirms the trend of simulations up to a point where the
accumulation of errors dominates the experiment.

5.2.2. One qubit as an approximant of mathematical functions

We present two sets of single-qubit gates to construct quantum circuits that represent arbitrary
complex functions. Each set is based on known results from the theory of function approximations,
namely Fourier series and Universal Approximation Theorem (UAT), respectively. The range of
applicability of these theorems for quantum circuits and the conditions for universality are thus
inherited from their classical counterparts.

We present two Quantum version of the Fourier series approximation theorem, and the Quantum
equivalent to the Universal Approximation Theorem (UAT):

Quantum Fourier series. Let f, φ be any pair of functions f : R → [0, 1] and φ : R → [0, 2π)
, such that z(x) = f(x)eiφ(x) is a complex function with a finite number of finite discontinu-
ities integrable within an interval [a, b] ∈ R of length P . Then, there exists a set of parameters

{~θ1, ~θ2, . . . , ~θN} such that

〈1|
N∏
i=1

UF (x, ~θi)|0〉 = zN (x), (14)

with zN (x) the N -terms Fourier series.

Quantum UAT. Let f, φ be any pair of functions f : Im → [0, 1] and φ : Im → [0, 2π) , such
that z(~x) = f(~x)eiφ(~x) is a complex continuous function on Im, with Im = [0, 1]m. Then there is

an integer N and a set of parameters {~θ1, ~θ2, . . . , ~θN} such that∣∣∣∣∣f(~x)eiφ(~x) − 〈1|
N∏
i=1

UUAT(~x, ~θi)|0〉

∣∣∣∣∣ < ε, (15)

for any ε > 0.

5.2.3. Experiments

We implement the single-qubit universal approximant in a superconducting qubit circuit cooled
to the base temperature of a dilution refrigerator (20mK). The qubit is a 3D transmon geometry
located inside an aluminum three-dimensional cavity. The cavity bare frequency, ωc = 2π × 7.89
GHz, is greatly detuned from the qubit frequency, ωq = 2π×4.81 GHz. Hence, there is a qubit state-
dependent dispersive shift on the cavity resonance, 2|χ| = 2π× 1.5MHz. The qubit anharmonicity
is α = −2π × 324 MHz and the qubit relaxation and spin-echo decay times are, respectively,

Initial Approaches for Decentralised and High-Performance Learning 39 of 52

1.0

0.5

0.0

0.5

1.0

f(x
)

tanh(5x) step(x) poly(x) ReLU(x)

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

f(x
)

1.0 0.5 0.0 0.5 1.0
x

1.0 0.5 0.0 0.5 1.0
x

1.0 0.5 0.0 0.5 1.0
x

Fo
ur

ie
r

U
AT

Classical
Simulation
Experiment
Target

Figure 7. Fittings for four real-valued functions using the Z benchmark with five layers. Blue triangles represent
classical models, namely Fourier and UAT, while red dots represent its quantum counterparts computed using a
classical simulator. Green squares are the experimental execution of the optimized quantum model using a
superconducting qubit. The target function is plotted in black for comparison. The analysis for experimental
errors is plotted for the ReLU function and the UAT model.

T1 = 15.6 µs and T2Echo = 12.0 µs. These time scales exceed the operation times needed to
implement the algorithm up to 6 layers by 2 orders of magnitude.

An optimization process is required to find the optimal gate parameters. For quantum methods,
optimization brings more problems that are yet to be solved. In particular, the landscape of the
loss function in the parameter space remains unknown, and thus it is hard to infer what kind of
classical optimizers perform well for each particular problem. For this reason we look for the best-
fit parameters using the aforementioned L-BFGS algorithm and the genetic option CMA. Genetic
algorithms explore vast regions of the parameter space and do not depend on gradients. However,
they usually require more function evaluations to converge to the minimum. In this case it is not
possible to guarantee that the solution found by any optimization algorithm is the global minimum
of our loss function.

In Figure 7 we show the resulting fit for four single-variable real-valued functions of interest
(see caption). In this case the Z benchmark with 5 layers is considered. A classical approximation
(blue), a quantum exact simulation (red) and its experimental implementation (green) are depicted.
All methods follow the overall shape of the target function. Classical Fourier approximations
return less accurate predictions on the value of f(x) due to the periodic nature of the model. The
quantum Fourier and both classical and quantum UAT models return better results for all values
of x. This behaviour is observed in all benchmarks. The experimental results retain the qualitative
properties of the exact models, although a loss in performance is visible. In addition, an analysis
of experimental uncertainties is also depicted at the UAT ReLU plot from Figure 7.

We have shown that a single-qubit circuit has enough flexibility to encode any complex function
z(x) in the degrees of freedom of each quantum gate. This universal representation is achieved by
acting with a quantum circuit on a single-qubit gate that depends on input variables as well as
additional parameters that are fixed by Machine Learning techniques.

This result guarantees that a single-qubit circuit, as defined in this work, is able to store two
different and independent real functions. These functions are not restricted to be single-variable,

Initial Approaches for Decentralised and High-Performance Learning 40 of 52

as there exists no limitation to the dimensionality of its independent variable. Our present results
provide the highest degree of compression of data in a single-qubit state, since there are no more
degrees of freedom available in a qubit.

The proof for universality was shown following two different approaches, leading to two sets
of single-qubit gates. In the first method, we found a link between quantum circuits and Fourier
series. We have defined a quantum gate tuned by five parameters such that the row of N gates
applied to an initial state provides a final state where an N -term Fourier series is encoded. For
the second method, a single-qubit quantum gate is applied multiple times to yield a final state
whose form is compatible with the Universal Approximation Theorem. The input state does not
compromise the validity of the approximation theorems but it affects the parameters defining the
circuit.

We also provide numerical evidence on the flexibility and approximation capabilities of these
quantum circuits. The benchmarks have been obtained using simulations and classical minimizers
to find optimal parameters for a set of test functions. We have included as benchmarks 1D and 2D
real functions and 1D complex functions. The final results have also been compared to its classical
counterparts. In all cases, it is possible to see an equivalent scaling for both classical and quantum
methods. This ensures numerically that the quantum procedure is comparable to the standard
classical ones.

Experimental results implemented using a superconducting trasmon qubit confirm the same
trend obtained with the classical simulations. The finite qubit coherence does not seem to impact
the results significantly in the gate sets applied.

5.2.4. Relevant publications

• Adrián Pérez-Salinas, David López-Núñez, Artur Garćıa-Sáez, P. Forn-Dı́az, and José I.
Latorre. One qubit as a universal approximant, Phys. Rev. A 104, 012405 (2021) [118]
Zenodo record: https://zenodo.org/record/5531271

5.2.5. Relevant software and/or external resources

• Code related to the paper One qubit as a Universal Approximant can be found in the repos-
itory: https://github.com/UB-Quantic/Universal-Approximator

Initial Approaches for Decentralised and High-Performance Learning 41 of 52

https://zenodo.org/record/5531271
https://github.com/UB-Quantic/Universal-Approximator

6. Ongoing Work and Conclusions

6.1. Relation to WP8 Use Cases

Research outcomes presented in this deliverable support AI by speeding up hyperparameter se-
lection procedures (Section 3), deploying systems to non-centralized settings (Section 4) or taking
advantage of dedicated quantum hardware for fast computations (Section 5). Contributions can
be used to create accelerated or non-centralized versions of a wide range of AI systems, including
those described in the use cases of D8.1. In this subsection, we outline promising ways in which
research results can improve use case features.

First, faster neural model selection, distributed learning and quantum computing can be used
in the context of use case feature 4B5 “Efficiency” to reduce infrastructure overhead when tuning
AI and, if distributed learning clusters or quantum computers are available, speed up training and
inference time by replacing traditional computing units. Speed improvements can also be used by
use case feature 3C2 “Just-in-time content creation & adaptation” to train and execute novel event
detection systems with new data and use them to notify journalists.

Of the non-centralized computing paradigms, decentralized graph neural networks could be
used for deployment of mobile device tools, such as content verification systems satisfying use case
features 1A1 “Synthetic Text Detection/Verification” and 1A2 “Synthetic Image Detection/Ver-
ification” that are trained based on real-world activity without the upkeep cost of centralized
services. In a future scenario, we envision usage of decentralized learning in mobile social networks
that gather user annotations of deepfakes and use these to collectively annotate incoming con-
tent, such as text and images, as fake or not while preserving the confidentiality of input content
(which is often crucial, due to privacy or security constraints). Furthermore, resource-aware mod-
els executing at the edge adhere to localized data processing of use case feature 7D2 “On-premise
processing” by respectively enabling collective learning of locally processed data and deploying AI
for predictions.

Finally, partner contributions include new software tools that implement research breakthroughs.
The source code has been made publicly available through code repositories, so that owners of re-
search infrastructure using these tools can easily assert that implementations are straightforward
per use case feature 4B3 “Source code accessibility”. Moreover, the source code can be downloaded
and applied on AI solutions that are trained and deployed within institutional infrastructure per
the use case feature 4B1 “Local execution”. Source code is in large part written in Python per use
case feature 4B4 “Runtime environment”.

6.2. Ongoing and future work

Below, we summarize ongoing and future work of each task, organized per contributors.

6.2.1. Neural architecture search (Task 3.4)

UNITN will focus on investigating neuro-evolutionary network architecture search approaches,
which will automatically search for optimal network architectures using evolutionary algorithms.
Although these approaches are very effective, evolutionary algorithms rely heavily on having a
large population of individuals (i.e., network architectures) and are therefore memory expensive.
As such, we will look at regularized evolutionary algorithms with low memory footprint to evolve
a dynamic image classifier. In details, we will consider novel custom operators that regularize the
evolutionary process of a micro-population of a few individuals.

Initial Approaches for Decentralised and High-Performance Learning 42 of 52

6.2.2. AI at the edge, decentralised and distributed learning (Task 3.5)

CERTH will port more AI models to decentralized and at the edge settings and will continue
evolving developed frameworks, for example to facilitate learning with non-local graph diffusion
schemes when homophily is not a valid hypothesis and support multiple samples per device. Soft-
ware outcomes will also be refined to reach a state of technological readiness that will support
easy integration of AI solutions in real-world decentralized applications by non-experts. These
developments will be guided by the aforementioned prospective deployment in use case features
1A1 “Synthetic Text Detection/Verification” and 1A2 “Synthetic Image Detection/Verification”.

Moreover, distributed algorithms will be developed that account for non-IID data, as well as
privacy constraints, and their efficacy will be demonstrated within the context of synthetic audio
detection of WP8’s use case feature 1A3 “Synthetic Audio Detection/Verification”. In detail an
audio dataset will be extracted from the open-source TIMIT Corpus [119] of human audio record-
ings, supplemented with fake recordings produced by state-of-the-art text-to-speech algorithms,
and split across several simulated devices under non-IID distributions. Then, federated learning
techniques will be used to train deep neural models of fake audio detection without sharing data
and hence adhering to legal contexts and on-premise processing requirements of use case features
1E1 “Information about Legal Data Compliance” and 7D2 “On-premise processing” respectively.

JR will research more parameter update algorithms that can be used in the training of dis-
tributed AI models. In detail, there is ongoing research on the novel AdaFamily algorithm, a
family of adaptive gradient optimization algorithms resembling Adam, AdaBelief and AdaMomen-
tum. These will be compared to mini-batch trimming to identify the optimizers with the best
generalization capabilities in heterogeneous distributed computing. Finally, both the AdaFamily
and mini-batch trimming will be implemented within distributed training frameworks, such as
DeepSpeed and Pytorch Lightning.

6.2.3. Quantum assisted reinforcement learning (Task 3.8)

BSC Development on Quantum algorithms for the approximation of mathematical functions
allows the implementation of arbitrary operations into a Quantum circuit. From these circuits,
further development will follow in order to implement more complex operations as a combination
of the approximation of elementary mathematical functions. These algorithms are then intended
to be used in complex optimization problems and learning operations on classical data.

In addition, planned research aims to extend the application of arbitrary mathematical func-
tions to complex operations performed by a Quantum device. In particular, operations related
to the interaction between a Quantum environment (such as a Quantum device in the lab) and a
controlling device using past development of arbitrary functions.

6.3. Conclusions

In this deliverable, we presented the initial research and development results of WP3 regarding
decentralized and high-performance learning that were obtained by Task 3.4 (Neural Architecture
Search), Task 3.5 (AI at the Edge, Decentralised and Distributed Learning) and Task 3.8 (Quan-
tum Assisted Reinforcement Learning). These tasks explored novel directions of scaling computing
power, i.e., respectively through algorithmically efficient neural architecture search, by sharing the
burden of computations between multiple (edge) workstations and devices, and with quantum com-
puting that reduces running time complexity of popular machine learning operations. The efficacy
of developed approaches was tested on a variety of popular AI tasks, such as image classification,

Initial Approaches for Decentralised and High-Performance Learning 43 of 52

social network mining and text classification. Beyond the scope of testing, explored principles are
generic and can support AI on other kinds of media data too.

In terms of architecture search in T3.4, a workshop and a journal special issue were organized,
a survey on recent developments was performed and a new algorithm was developed to automate
search with few-shot learning. New methods to share the burden of AI model calculations across
multiple devices were explored in T3.5; these span decentralized learning of model fragments to
classify in-device data, distributed training of large datasets and ways to compress models to fit
on available resources, where all directions improve existing non-centralized computing paradigms
when run on distributed workstations or edge devices. Finally, T3.8 explored quantum computing
acceleration of machine learning operations by showing how its backbone universal approximation
theorem can be achieved with the highest possible compression.

Reported task activities comprise domain exploration, progressing state-of-the-art research in
terms of theoretical and experimental results and providing publicly available software tools for
practical application. Overall, there is a satisfactory number of outcomes until this point. These
comprise 1 workshop, 1 special issue, 2 journal publications, 4 conference publications, 2 preprints
to be submitted for peer review in the near future, and 5 software projects that implement existing
research and can support practical deployment and ongoing research. The outcomes of ongoing
and future work detailed in this deliverable will be reported in D3.4 (due in M48).

A future goal for our work is to foster joint research that can prove mutually beneficial to
cooperating partners both within WP3 and in conjunction with other work packages. For example
it could be of interest to cross-breed non-centralized AI with other learning paradigms investigated
in WP3 or research outcomes of other work packages. At the same time, it is of high research
interest to apply architecture search or model compression practices to decentralized learning,
where model fragments may use different models based on local data or resources.

Initial Approaches for Decentralised and High-Performance Learning 44 of 52

References

[1] Y. LeCun, J. Denker, and S. Solla, “Optimal brain damage,” in Proc. NeurIPS, 1989.

[2] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and connections for efficient
neural networks,” in Proc. NeurIPS, 2015.

[3] S. Han, H. Mao, and W. Dally, “Deep compression: compressing deep neural networks with
pruning, trained quantization and huffman coding,” in Proc. ICLR, 2016.

[4] Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for efficient dnns,” in Proc.
NeurIPS, 2016.

[5] G. Li, C. Qian, C. Jiang, X. Lu, and K. Tang, “Optimization based layer-wise magnitude-
based pruning for dnn compression,” in Proc. IJCAI, 2018.

[6] X. Dai, H. Yin, and N. K. Jha, “Nest: a neural network synthesis tool based on a grow-and-
prune paradigm,” IEEE Trans. Comput., vol. 68, no. 10, p. 1487–1497, 2019.

[7] S. Anwar, K. Hwang, and W. Sung, “Structured pruning of deep convolutional neural net-
works,” ACM J. Emerg. Technol. Comput. Syst., vol. 13, no. 3, p. 1–18, 2017.

[8] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. Graf, “Pruning filters for efficient con-
vnets,” in Proc. ICLR, 2017.

[9] H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang, “Network trimming: a data-driven neuron
pruning approach towards efficient deep architectures,” arXiv preprint arXiv: 1607.03250,
2016.

[10] Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang, “Soft filter pruning for accelerating deep
convolutional neural networks,” in Proc. IJCAI, 2018.

[11] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured sparsity in deep neural
networks,” in Proc. NeurIPS, 2016.

[12] J.-H. Luo, J. Wu, and W. Lin, “Thinet: a filter level pruning method for deep neural network
compression,” in Proc. ICCV, 2017.

[13] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning efficient convolutional
networks through network slimming,” in Proc. ICCV, 2017.

[14] J. Ye, X. Lu, Z. Lin, and J. Z. Wang, “Rethinking the smaller-norm-less-informative assump-
tion in channel pruning of convolution layers,” in Proc. ICLR, 2018.

[15] R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V. Morariu, X. Han, M. Gao, C.-Y. Lin, and L. Davis,
“Nisp: pruning networks using neuron importance score propagation,” in Proc. CVPR, 2018.

[16] J. Frankle and M. Carbin, “The lottery ticket hypothesis: finding sparse, trainable neural
networks,” in Proc. ICLR, 2019.

[17] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking the value of network
pruning,” in Proc. ICLR, 2019.

[18] Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Compressing deep convolutional networks using
vector quantization,” arXiv preprint arXiv:1412.6115, 2014.

Initial Approaches for Decentralised and High-Performance Learning 45 of 52

[19] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized convolutional neural networks
for mobile devices,” in Proc. CVPR, 2016.

[20] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep learning with limited
numerical precision,” in Proc. ICML, 2016.

[21] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: training deep neural networks
with binary weights during propagations,” in Proc. NeurIPS, 2015.

[22] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: imagenet classification
using binary convolutional neural networks,” in Proc. ECCV, 2016.

[23] Q. Hu, P. Wang, and J. Cheng, “From hashing to cnns: training binary weight networks via
hashing,” in Proc. AAAI, 2018.

[24] F. Li, B. Zhang, and B. Liu, “Ternary weight networks,” arXiv preprint arXiv:1605.04711,
2016.

[25] C. Zhu, S. Han, H. Mao, and W. Dally, “Trained ternary quantization,” in Proc. ICLR, 2018.

[26] M. Kim and P. Smaragdis, “Bitwise neural networks,” arXiv preprint arXiv:1601.06071,
2016.

[27] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized neural net-
works,” in Proc. NeurIPS, 2016.

[28] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up convolutional neural networks
with low rank expansions,” in Proc. BMVC, 2014.

[29] X. Zhang, J. Zou, K. He, and J. Sun, “Accelerating very deep convolutional networks for
classification and detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 10,
p. 1943–1955, 2015.

[30] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin, “Compression of deep convolu-
tional neural networks for fast and low power mobile applications,” in Proc. ICLR, 2014.

[31] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempitsky, “Speeding-up convolu-
tional neural networks using fine-tuned cp-decomposition,” in Proc. ICLR, 2015.

[32] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” in Proc.
NeurIPS, 2014.

[33] A. Romero, N. Ballas, S. Kahou, A. Chassang, C. Gatta, and Y. Bengio, “Fitnets: hints for
thin deep nets,” in Proc. ICLR, 2015.

[34] S. Zagoruyko and N. Komodakis, “Paying more attention to attention: improving the per-
formance of convolutional neural networks via attention transfer,” in Proc. ICLR, 2017.

[35] A. Malinin, B. Mlodozeniec, and M. Gales, “Ensemble distribution distillation,” in Proc.
ICLR, 2020.

[36] Y. Shen, Z. Zhang, M. Sabuncu, and L. Sun, “Real-time uncertainty estimation in computer
vision via uncertainty-aware distribution distillation,” in Proc. WACV, 2021.

Initial Approaches for Decentralised and High-Performance Learning 46 of 52

[37] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,” in Proc.
ICLR, 2016.

[38] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei, “Deformable convolutional
networks,” in Proc. ICCV, 2017.

[39] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proc. CVPR, 2016.

[40] G. Huang, Z. Liu, L. V. D. Maaten, and K. Weinberger, “Densely connected convolutional
networks,” in Proc. CVPR, 2017.

[41] M. Lin, Q. Chen, and S. Yan, “Network in network,” in Proc. ICLR, 2014.

[42] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception
architecture for computer vision,” in Proc. CVPR, 2016.

[43] F. Iandola, S. Han, M. Moskewicz, K. Ashraf, W. Dally, and K. Keutzer, “Squeezenet:
Alexnet-level accuracy with 50x fewer parameters and ¡0.5 mb model size,” arXiv preprint
arXiv:1602.07360, 2016.

[44] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transformations for
deep neural networks,” in Proc. CVPR, 2017.

[45] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: an extremely efficient convolutional
neural network for mobile devices,” in Proc. CVPR, 2018.

[46] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: practical guidelines for efficient
cnn architecture design,” in Proc. ECCV, 2018.

[47] A. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and
H. Adam, “Mobilenets: efficient convolutional neural networks for mobile vision applica-
tions,” arXiv:1704.04861, 2017.

[48] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2: inverted
residuals and linear bottlenecks,” in Proc. CVPR, 2018.

[49] X. Bai, X. Liu, Q. Liu, J. Song, N. Sebe, and B. Kim, “Explainable deep learning for efficient
and robust pattern recognition: A survey of recent developments,” Pattern Recognition,
vol. 120, Article 108102, 2021.

[50] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization of machine
learning algorithms,” in Advances in Neural Information Processing Systems (F. Pereira,
C. J. C. Burges, L. Bottou, and K. Q. Weinberger, eds.), vol. 25, Curran Associates, Inc.,
2012.

[51] M. Patacchiola, J. Turner, E. J. Crowley, M. O' Boyle, and A. J. Storkey, “Bayesian meta-
learning for the few-shot setting via deep kernels,” in Advances in Neural Information Pro-
cessing Systems (H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, eds.),
vol. 33, pp. 16108–16118, Curran Associates, Inc., 2020.

[52] L. S.-T. Martin Wistuba, Nicolas Schilling, “Two-stage transfer surrogate model for au-
tomatic hyperparameter optimization.,” in Machine Learning and Knowledge Discovery in
Databases - European Conference, ECML PKDD 2016, Riva del Garda, Italy, 2016.

Initial Approaches for Decentralised and High-Performance Learning 47 of 52

[53] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,” J. Mach.
Learn. Res., vol. 13, p. 281–305, Feb. 2012.

[54] M. Feurer, B. Letham, F. Hutter, and E. Bakshy, “Practical transfer learning for bayesian
optimization,” 2021.

[55] M. Volpp, L. P. Fröhlich, K. Fischer, A. Doerr, S. Falkner, F. Hutter, and C. Daniel, “Meta-
learning acquisition functions for transfer learning in bayesian optimization,” in International
Conference on Learning Representations, 2020.

[56] V. Perrone, R. Jenatton, M. W. Seeger, and C. Archambeau, “Scalable hyperparameter trans-
fer learning,” in Advances in Neural Information Processing Systems (S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, eds.), vol. 31, Curran Asso-
ciates, Inc., 2018.

[57] M. Wistuba and J. Grabocka, “Few-shot bayesian optimization with deep kernel surrogates,”
arXiv preprint arXiv:2101.07667, 2021.

[58] V. Marx, “The big challenges of big data,” Nature, vol. 498, no. 7453, pp. 255–260, 2013.

[59] H. R. Varian, “Beyond big data,” Business Economics, vol. 49, no. 1, pp. 27–31, 2014.

[60] A. Taherkordi, F. Eliassen, and G. Horn, “From iot big data to iot big services,” in Proceedings
of the Symposium on Applied Computing, pp. 485–491, 2017.

[61] H. Liu, “Beyond the scale of big data,” Frontiers in big Data, vol. 1, p. 1, 2018.

[62] A. Zaslavsky, C. Perera, and D. Georgakopoulos, “Sensing as a service and big data,” arXiv
preprint arXiv:1301.0159, 2013.

[63] R. M. Alguliyev, R. T. Gasimova, and R. N. Abbaslı, “The obstacles in big data process.,”
International Journal of Modern Education & Computer Science, vol. 9, no. 3, 2017.

[64] A. C. Djedouboum, A. A. Abba Ari, A. M. Gueroui, A. Mohamadou, and Z. Aliouat, “Big
data collection in large-scale wireless sensor networks,” Sensors, vol. 18, no. 12, p. 4474,
2018.

[65] M.-L. Song, R. Fisher, J.-L. Wang, and L.-B. Cui, “Environmental performance evaluation
with big data: Theories and methods,” Annals of Operations Research, vol. 270, no. 1,
pp. 459–472, 2018.

[66] C. Dwork, “Differential privacy: A survey of results,” in International conference on theory
and applications of models of computation, pp. 1–19, Springer, 2008.

[67] A. Friedman and A. Schuster, “Data mining with differential privacy,” in Proceedings of
the 16th ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 493–502, 2010.

[68] C. Dwork, A. Roth, et al., “The algorithmic foundations of differential privacy.,” Foundations
and Trends in Theoretical Computer Science, vol. 9, no. 3-4, pp. 211–407, 2014.

[69] Y. Zhang, N. Suda, L. Lai, and V. Chandra, “Hello edge: Keyword spotting on microcon-
trollers,” CoRR, vol. abs/1711.07128, 2017.

Initial Approaches for Decentralised and High-Performance Learning 48 of 52

[70] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang,
V. Vasudevan, et al., “Searching for mobilenetv3,” in Proceedings of the IEEE International
Conference on Computer Vision, pp. 1314–1324, 2019.

[71] C.-J. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury, M. Dukhan, K. Hazelwood, E. Isaac,
Y. Jia, B. Jia, et al., “Machine learning at facebook: Understanding inference at the edge,” in
2019 IEEE International Symposium on High Performance Computer Architecture (HPCA),
pp. 331–344, IEEE, 2019.

[72] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once-for-all: Train one network and spe-
cialize it for efficient deployment,” in International Conference on Learning Representations,
2020.

[73] J. Yu, L. Yang, N. Xu, J. Yang, and T. Huang, “Slimmable neural networks,” in International
Conference on Learning Representations, 2019.

[74] J. Yu and T. S. Huang, “Universally slimmable networks and improved training techniques,”
in Proceedings of the IEEE International Conference on Computer Vision, pp. 1803–1811,
2019.

[75] L. Guerra, B. Zhuang, I. Reid, and T. Drummond, “Switchable precision neural networks,”
arXiv preprint arXiv:2002.02815, 2020.

[76] Q. Jin, L. Yang, and Z. Liao, “Adabits: Neural network quantization with adaptive bit-
widths,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 2146–2156, 2020.

[77] A. Lambert, F. Le Bolzer, and F. Schnitzler, “Flexible recurrent neural networks,” in Machine
Learning and Knowledge Discovery in Databases, 2020.

[78] C. Hu, J. Jiang, and Z. Wang, “Decentralized federated learning: a segmented gossip ap-
proach,” arXiv preprint arXiv:1908.07782, 2019.

[79] S. Savazzi, M. Nicoli, and V. Rampa, “Federated learning with cooperating devices: A
consensus approach for massive iot networks,” IEEE Internet of Things Journal, vol. 7,
no. 5, pp. 4641–4654, 2020.

[80] I. Hegedűs, G. Danner, and M. Jelasity, “Decentralized learning works: An empirical com-
parison of gossip learning and federated learning,” Journal of Parallel and Distributed Com-
puting, vol. 148, pp. 109–124, 2021.

[81] G. Danner and M. Jelasity, “Token account algorithms: the best of the proactive and reactive
worlds,” in 2018 IEEE 38th International Conference on Distributed Computing Systems
(ICDCS), pp. 885–895, IEEE, 2018.

[82] A. Koloskova, S. Stich, and M. Jaggi, “Decentralized stochastic optimization and gossip algo-
rithms with compressed communication,” in International Conference on Machine Learning,
pp. 3478–3487, PMLR, 2019.

[83] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation ranking: Bringing
order to the web.,” tech. rep., Stanford InfoLab, 1999.

[84] H. Tong, C. Faloutsos, and J.-Y. Pan, “Fast random walk with restart and its applications,”
in Sixth international conference on data mining (ICDM’06), pp. 613–622, IEEE, 2006.

Initial Approaches for Decentralised and High-Performance Learning 49 of 52

[85] M. T. Barlow, Random walks and heat kernels on graphs, vol. 438. Cambridge University
Press, 2017.

[86] A. Ortega, P. Frossard, J. Kovačević, J. M. Moura, and P. Vandergheynst, “Graph signal
processing: Overview, challenges, and applications,” Proceedings of the IEEE, vol. 106, no. 5,
pp. 808–828, 2018.

[87] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A comprehensive survey on
graph neural networks,” IEEE transactions on neural networks and learning systems, 2020.

[88] M. Liu, H. Gao, and S. Ji, “Towards deeper graph neural networks,” in Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pp. 338–348, 2020.

[89] M. Chen, Z. Wei, Z. Huang, B. Ding, and Y. Li, “Simple and deep graph convolutional
networks,” in International Conference on Machine Learning, pp. 1725–1735, PMLR, 2020.

[90] Q. Huang, H. He, A. Singh, S.-N. Lim, and A. R. Benson, “Combining label propagation
and simple models out-performs graph neural networks,” arXiv preprint arXiv:2010.13993,
2020.

[91] H. Dong, J. Chen, F. Feng, X. He, S. Bi, Z. Ding, and P. Cui, “On the equivalence of
decoupled graph convolution network and label propagation,” in Proceedings of the Web
Conference 2021, pp. 3651–3662, 2021.

[92] E. Krasanakis, S. Papadopoulos, and I. Kompatsiaris, “p2pgnn: A decentralized graph neural
network for node classification in peer-to-peer networks,” arXiv preprint arXiv:2111.14837,
2021.

[93] M. McPherson, L. Smith-Lovin, and J. M. Cook, “Birds of a feather: Homophily in social
networks,” Annual review of sociology, vol. 27, no. 1, pp. 415–444, 2001.

[94] G. Berry, A. Sirianni, I. Weber, J. An, and M. Macy, “Going beyond accuracy: estimating
homophily in social networks using predictions,” arXiv preprint arXiv:2001.11171, 2020.

[95] O. Shchur, M. Mumme, A. Bojchevski, and S. Günnemann, “Pitfalls of graph neural network
evaluation,” arXiv preprint arXiv:1811.05868, 2018.

[96] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou, C. Ma, L. Yu, Y. Gai, et al.,
“Deep graph library: A graph-centric, highly-performant package for graph neural networks,”
arXiv preprint arXiv:1909.01315, 2019.

[97] G. Namata, B. London, L. Getoor, B. Huang, and U. EDU, “Query-driven active surveying
for collective classification,” in 10th International Workshop on Mining and Learning with
Graphs, vol. 8, 2012.

[98] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad, “Collective
classification in network data,” AI magazine, vol. 29, no. 3, pp. 93–93, 2008.

[99] J. Klicpera, A. Bojchevski, and S. Günnemann, “Predict then propagate: Graph neural
networks meet personalized pagerank,” arXiv preprint arXiv:1810.05997, 2018.

[100] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

Initial Approaches for Decentralised and High-Performance Learning 50 of 52

[101] S. Bock, J. Goppold, and M. Weiß, “An improvement of the convergence proof of the adam-
optimizer,” arXiv preprint arXiv:1804.10587, 2018.

[102] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,
V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and
X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” 2015.
Software available from tensorflow.org.

[103] E. Krasanakis, S. Papadopoulos, I. Kompatsiaris, and A. Symeonidis, “pygrank: A python
package for graph node ranking,” arXiv preprint arXiv:2110.09274, 2021.

[104] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR,
vol. abs/1412.6980, 2015.

[105] P. Zhou, J. Feng, C. Ma, C. Xiong, S. C. H. Hoi, and E. Weinan, “Towards theo-
retically understanding why sgd generalizes better than adam in deep learning,” ArXiv,
vol. abs/2010.05627, 2020.

[106] X. Wang, Y. Chen, and W. Zhu, “A survey on curriculum learning,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, pp. 1–1, 2021.

[107] X. Peng, L. Li, and F.-Y. Wang, “Accelerating minibatch stochastic gradient descent using
typicality sampling,” IEEE Transactions on Neural Networks and Learning Systems, vol. 31,
pp. 4649–4659, 2020.

[108] L. van der Maaten and G. E. Hinton, “Visualizing data using t-sne,” Journal of Machine
Learning Research, vol. 9, pp. 2579–2605, 2008.

[109] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2016.

[110] G. Huang, Z. Liu, and K. Q. Weinberger, “Densely connected convolutional networks,” 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269,
2017.

[111] H. Fassold, “Some like it tough: Improving model generalization via progressively increasing
the training difficulty,” CoRR, vol. abs/2110.13058, 2021.

[112] G. Huang, D. Chen, T. Li, F. Wu, L. van der Maaten, and K. Weinberger, “Multi-scale dense
networks for resource efficient image classification,” in International Conference on Learning
Representations, 2018.

[113] A. Ruiz and J. Verbeek, “Adaptative inference cost with convolutional neural mixture mod-
els,” in Proceedings of the IEEE International Conference on Computer Vision, pp. 1872–
1881, 2019.

[114] A. Ruiz and J. Verbeek, “Distilled hierarchical neural ensembles with adaptive inference
cost,” arXiv preprint arXiv:2003.01474, 2020.

[115] S.-I. Mirzadeh, M. Farajtabar, A. Li, N. Levine, A. Matsukawa, and H. Ghasemzadeh, “Im-
proved knowledge distillation via teacher assistant,” arXiv preprint arXiv:1902.03393, 2019.

Initial Approaches for Decentralised and High-Performance Learning 51 of 52

[116] T. Mayet, A. Lambert, P. Le Guyadec, F. Le Bolzer, and F. Schnitzler, “SkipW: Resource
adaptable RNN with strict upper computational limit,” in International Conference on
Learning Representations, 2020.

[117] A. Ozerov and N. Q. K. Duong, “Inplace knowledge distillation with teacher assistant for
improved training of flexible deep neural networks,” in 29th European Signal Processing
Conference, EUSIPCO 2021, (Dublin, Ireland), Aug. 2021.

[118] A. Pérez-Salinas, D. López-Núñez, A. Garćıa-Sáez, P. Forn-Dı́az, and J. I. Latorre, “One
qubit as a universal approximant,” Phys. Rev. A, vol. 104, p. 012405, Jul 2021.

[119] J. S. Garofolo, “Timit acoustic phonetic continuous speech corpus,” Linguistic Data Consor-
tium, 1993, 1993.

Initial Approaches for Decentralised and High-Performance Learning 52 of 52

	Executive Summary
	Introduction
	Neural Architecture Search (Task 3.4)
	Overview of our neural architecture search contributions
	Efficient deep learning using model compression and acceleration
	Model Compression and Acceleration
	Relevant publications

	Deep kernel surrogates for few-shot Bayesian hyperparameter optimization
	Problem Statement
	Methodology
	Experiments
	Relevant publications

	AI at the Edge, Decentralised and Distributed Learning (Task 3.5)
	Overview of our AI at the edge, decentralised and distributed learning contributions
	Decentralized information diffusion and graph neural networks
	Problem setting
	Uncertain peer-to-peer random walk diffusion
	Uncertain peer-to-peer decoupled GNNs
	Experiments
	JGNN: a library to support learning on edge devices
	Relevant preprints (to be submitted for publication)
	Relevant software and/or external resources

	Towards efficient distributed training
	Introduction
	Mini-batch trimming
	Experiments and evaluation
	Random sample dropping
	Relevant publications
	Relevant software and/or external resources

	Resource aware models for the edge
	Resource adaptable RNN
	Inplace knowledge distillation with teacher assistant
	Relevant publications

	Quantum Assisted Reinforcement Learning (Task 3.8)
	Overview of quantum assisted reinforcement learning contributions
	Universal approximation of functions with Quantum computers
	Introduction
	One qubit as an approximant of mathematical functions
	Experiments
	Relevant publications
	Relevant software and/or external resources

	Ongoing Work and Conclusions
	Relation to WP8 Use Cases
	Ongoing and future work
	Neural architecture search (Task 3.4)
	AI at the edge, decentralised and distributed learning (Task 3.5)
	Quantum assisted reinforcement learning (Task 3.8)

	Conclusions

