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1. Executive Summary

This deliverable provides the research results at M12 of the activities in Task 3.1 (Lifelong and
on-line learning), Task 3.3 (Transfer learning) and Task 3.7 (Learning to count). We present in
detail the motivation, the developed methods, the obtained results making when available explicit
references to the publications, software by the partners and the contributions to the WP8 use
cases.

The presented work reflects the very good stage of the work done in WP3 so far. All the
participants are very active and their results have been successfully published in top venues of
the community. We also present a detailed description of the ongoing research with very positive
perspectives for the future developments. In detail:

• The lifelong and on-line learning (Task 3.1) contributions presented in this deliverable include
theoretical and experimental aspects and particularly focus on: (a) novel techniques for
novel class discovery, (b) a new method for class-incremental learning, (c) investigation of
dynamic adaptation framework for DNNs and (d) a new approach focusing on compatible
feature learning. These are related to WP8 use cases 2A, 2B, 3A3, 4C1 and 7A3 providing
support for archive exploration, image and video analysis, and organization of image and
video collections. The ongoing work for Task 3.1 considers (i) memory-constrained online
continual learning and (ii) class-incremental learning without memory of past data. Both
approaches try to reduce the effects of catastrophic forgetting and to ensure a better balance
between stability and plasticity by mixing fixed and adaptive feature representations.

• The transfer learning (Task 3.3) contributions presented in this deliverable include: (a) a
novel approach for multi-target domain adaptation, (b) a novel method for multi-source
domain generalization, and (c) a novel method for heterogeneous document embeddings for
cross-lingual text classification. The developed approaches are relevant to the WP8 use cases
3A3, 3C2, 4C1, 4C5, and 7A3 providing support for archive exploration, content adaptation,
image, video, and multimodal analysis, and organization of image and video collections.
The ongoing and future work on Task 3.3 include: (i) unsupervised domain adaptation on
videos, (ii) presenting a stable deep model pre-training pipeline to obtaining models which are
transferable towards a large number of target tasks, and (iii) extending existing heterogeneous
document embeddings by integrating view-generating function and vector averaging for cross-
lingual text classification.

• Regarding learning to count and quantify (Task 3.7), this deliverable includes: (a) a novel
approach developed for re-assessing quantification methods with quantification-oriented pa-
rameter optimisation and (b) a new method for counting objects by leveraging domain adap-
tation techniques. The tools developed in this task contributes to use cases 2B1, 3C2-6,
3C2-7, 4C2, by providing solutions to analyze visual content and to count objects contained
in it. Among ongoing work of Task 3.7 some can be listed as: (i) an application of learning
to quantify to monitor and mitigate the bias of classifiers and (ii) an application of learning
to quantify to estimate recall in technology-assisted review.

The goal in the near future is to foster joint research that can result in developments that are
mutually beneficial to the cooperating partners.
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2. Introduction

In an ideal world, there should be abundant labeled training samples, which have the same distri-
bution as the test data. However, in practice, collecting and annotating sufficient training data is
often expensive, time-consuming, and it can be even unrealistic in some scenarios. Transfer learn-
ing aims at reusing and exploiting models, originally trained in a given task, to solve a second and
potentially unrelated problem. Therefore, it transfers the knowledge across domains and promises
to solve the aforementioned problems. According to the discrepancy between domains, transfer
learning can be further divided into two categories, i.e., homogeneous and heterogeneous transfer
learning [2]. Homogeneous transfer learning approaches are regarding situations where the domains
are of the same feature space. Whereas heterogeneous transfer learning refers to the knowledge
transfer process in the situations where the domains have different feature spaces. In addition to
distribution adaptation, heterogeneous transfer learning typically requires feature space adapta-
tion, which makes it more complicated than homogeneous transfer learning. The contributions
of the AI4Media project regarding transfer learning methodologies are given in Section 4. These
include investigating the impact of size of the data for transfer learning, and examining at which
degree it is beneficial to use pre-trained representations and presenting novel methodologies for
multi-target domain adaptation and multi-source domain generalization. In this context, in total
three papers were accepted to be presented in peer-reviewed conferences and there is one ongoing
work in preparation to be submitted.

Transfer learning is related to Lifelong Learning which stands for the ability to continuously
acquiring, fine-tuning and transferring knowledge and skills [3]. Lifelong learning algorithms allow
AI systems to update their capabilities in order to understand novelty. The Lifelong Learning [3]
contribution of the AI4media partners are related to the practical cases in which: (1) access to
past data is limited or impossible, (2) computation needs should be as close to constant as possible
and (3) learning of new data eeds to be fast. Therefore, novel online learning strategies have been
investigated in the context of lifelong learning. The current contributions of the AI4Media project
regarding lifelong and online learning methodologies are given in Section 3. These include (a) two
methods tackling novel class discovery, which is an open set problem where classes of unlabeled
data are not predefined; (b) a dynamic adaptation framework for neural networks whose objec-
tive is to unify out-of-distribution detection, lifelong learning and neural distillation. Regarding
out-of-distribution detection a survey of existing methods is presented. Moreover, (c) a novel fea-
ture alignment method is introducing novel ways to learn internal feature representations which
are compatible with previously learned ones in lifelong learning. Thus, the feature comparability
throughout the whole learning process is provided. In total two papers were accepted to be pre-
sented in peer-reviewed conferences, two papers were accepted to peer-reviewed journals and there
is one submitted paper in a peer-reviewed conference.

The ideal world mentioned above is also free from dataset shift, i.e., the joint distribution
of the independent and the dependent variables is not the same in the training data and in the
unlabelled data for which predictions must be issued. When this occurs, estimating the prevalence
of the classes of interest in the unlabelled data is difficult, since “traditional” learning methods
(i.e., ones based on the IID assumption) assume these prevalence values to stay approximately
constant. Learning to Count is concerned with developing techniques for estimating quantities in
unlabelled data possibly affected by dataset shift, where these quantities can be the prevalence
values (i.e., relative frequencies) of the classes of interest (as needed in applications such as, e.g.,
monitoring consensus for a certain policy or political candidate in social media) or the number
of physical objects in instances of visual media (such as estimating car park occupancy from
surveillance camera images, or monitoring traffic volumes from road cameras). The contributions
of the AI4Media project regarding lifelong and online learning methodologies are given in Section 5.
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All the methods presented in this deliverable can be applied to media-related areas and appli-
cations. Indeed after describing each method, we also present their relations to WP8 Use Cases.
Finally, Section 6 concludes the deliverable by summarizing the work covered as well as presenting
the ongoing work regarding each task addressed in this deliverable.
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3. Lifelong and on-line learning (Task 3.1)

Lifelong and on-line learning are two open research topics in artificial intelligence whose overall
objective is to optimize model training from dynamic data. Handling such data is important
insofar as data are not all available from the beginning and trained models should augment their
capabilities in order to accommodate new data as they arrive. This task is not straightforward since
standard deep learning models are not designed to deal with non-static data. Advances in these
two closely related fields are potentially important for a large number of applications which deal
with dynamic data. This is particularly the case for media, where new concepts appear constantly,
e.g., in news and should be learned in order to ensure their appropriate processing.

3.1. Overview of our lifelong and on-line learning contributions (Task 3.1)

Withing this task partners propose works which tackle both theoretical and experimental facets of
lifelong and on-line learning. The contributions summarized here and discussed in more details in
the next subsections are designed so as to be usable by AI4Media use cases.

In Subsection 3.2, UNITN introduces two methods which tackle novel class discovery, an open
set problem where classes of unlabeled data are not predefined. The first method consists in an op-
timized usage of deep models which are pretrained on known classes during the novel class discovery
step. The second method introduces a holistic learning framework which exploits contrastive loss
to learn discriminative features from labeled and unlabeled data.

In Subsection 3.3, CEA proposes a comparison of Class-Incremental Learning (CIL) algorithms.
These algorithms are analyzed along six dimensions which are deemed important in incremental
learning. In addition, a simple but effective method inspired by imbalanced data learning methods
is proposed as a strong baseline of the future works.

In Subsection 3.4, AUTH discusses a contribution which is related to deep neural network
education. This work will consist of a dynamic adaptation framework for neural models whose
objective is to unify out-of-distribution detection, lifelong learning and neural distillation. The
first contribution is a survey of out-of-distribution detection, which is the first core component of
the education framework.

In Subsection 3.5, UNIFI investigates novel ways to learn internal features representations
which are compatible with previously learned ones in lifelong learning. This feature alignment is
important insofar as it allows for feature compatibility throughout the whole learning process in
a life-long setting. The main innovation is to train representations exploiting pre-allocated fixed
classifiers based on regular polytopes in order to enable stationarity of representations without
performance loss.

3.2. Novel class discovery (Task 3.1)

Contributing partners: UNITN

Since collecting human annotated data for every single task is both challenging and expen-
sive, the machine learning community has shifted the attention to the techniques that can learn
with limited or completely non-annotated data. To this end, many semi-supervised [4, 5] and
unsupervised learning [6, 7, 8, 9] methods have been proposed, which achieve promising results
compared to supervised learning methods. Nonetheless, not much effort has been made to exploit
prior knowledge from existing labeled datasets and use it to discover unknown classes that are not
present in the labeled data.
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Figure 1. The proposed method: (a) we first initialize the model on the labeled data (Lce). (b) then, we learn the
unsupervised clustering model for discovering new classes in unlabeled data, by pseudo-pair learning (Lppl),
pseudo-label learning (Lpll) and learning with the proposed loss (Lopm).

Novel Class Discovery (NCD) is an open set problem where classes of unlabeled data are
undefined previously and annotated samples of these novel classes are not available [1, 10, 11, 12].
In this concept, labeled data of known (so-called old) classes and the unlabeled data of novel
(so-called new) classes are given. The goal of novel class discovery is to identify new classes in
unlabeled data with the support of knowledge of old classes.

3.2.1. Discovering novel visual categories in an open world

Existing methods on NCD [1, 10, 11, 12] typically first pre-train a model with labeled data, and
then identify new classes in unlabeled data via unsupervised clustering. However, the labeled data
that provide essential knowledge are often under-explored in the second step. Thus, the model
can only benefit from the off-the-shell knowledge of the labeled data, but fails to leverage the
underlying relationship between the labeled and unlabeled data. The challenge is that the labeled
and unlabeled examples are from non-overlapping classes, which makes it difficult to build the
learning relationship between them.

We claim that the labeled data provide essential knowledge about underlying object structures
and common visual patterns. However, the use of labeled data is much harder than in semi-
supervised learning [5, 13] because the labeled and unlabeled samples are from disjoint classes. To
this end, we investigate: ”effectively exploiting the labeled data to promote the discovery of new
classes” and to do so, we propose a simple but effective method, called OpenMix.

We are provided with labeled data Dl = {X l, Y l} and unlabeled data Du = {Xu}. The number
of samples is N l in Dl and Nu in Du, respectively. Each labeled image xli has a label yli, where
yli ∈ {1, 2, ..., Cl} and Cl is the number of classes of Dl. Following [1], we assume the number of
classes of Du is prior knowledge, which is defined as Cu. The classes of Dl and Du are disjoint.
We define the classes as old classes and new classes for Dl and Du, respectively. The goal of novel
class discovery is to leverage the knowledge of Dl to identify the classes in Du.

We try to achieve this goal by learning a model constructed by a Convolutional Neural Network
(CNN) and two classifiers. These two classifiers, called old classifier and new classifier, are used to
recognize samples from old classes and new classes, respectively. The framework of our method is
illustrated in Fig. 1.

We utilize the labeled data to train the CNN and the old classifier, which can provide basic
discriminative representations for images and accurately classify samples of old classes. Given the
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labeled data Dl = {X l, Y l}, we are able to train the model in a supervised way. Specifically, the
model is trained with the cross-entropy loss, as done in the traditional supervised classification [14].

Following this, we learn an unsupervised clustering model on the unlabeled data by (1) pseudo-
pair learning and (2) pseudo-label learning, which allow us to identify samples of new classes. In
detail, given the model pre-trained on the labeled data, we additionally add a classifier layer of
Cu new classes on the head of CNN. We then focus on unsupervised clustering in unlabeled data
by first exploring the relationship between two images for model training. Inspired by DAC [15]
and DCCM [16], we first obtain the outputs of the new classifier for input unlabeled samples and
compute their cosine similarity matrix. We then estimate the pseudo-pairwise labels by setting a
threshold on cosine similarity matrix. By doing so, two images are defined as a positive pair if their
cosine similarity is larger than threshold, otherwise they are a negative pair. Given this pairwise
supervision, we train the model with a binary cross-entropy loss. For pseudo-label learning, we
reformulate the predictions output by the new classifier to one-hot pseudo-labels, which can be
used to further improve the model performance. At this stage, we only train the model with the
unlabeled samples using cross-entropy loss that are assigned with one-hot pseudo-labels. By jointly
considering the pseudo-pair learning and pseudo-label learning, the unsupervised clustering loss is
expressed as the sum of pseudo-pair learning and weighted pseudo-label learning.

In the described architecture until here, the labeled data only play the role of model initializa-
tion, however, there is no utilization of labeled data in the unsupervised clustering stage. Instead
OpenMix effectively leverage the labeled data Dl during the unsupervised clustering in unlabeled
data Du. In a nutshell, during unsupervised clustering, OpenMix additionally compounds examples
in two ways:

(a) Mix unlabeled examples with labeled samples: OpenMix mixes the labeled samples with
unlabeled samples, as well as their labels with pseudo-labels. Taking the prior knowledge that
labeled samples and unlabeled samples belong to completely different classes, we first extend the
label distributions of the labeled samples and unlabeled samples to the same size. Specifically, we
concatenate ŷl with a Cu-dim zeros-vector while ẑu (prediction of new classifier) with a Cl-dim
zeros-vector. The extended labels/pseudo-labels are represented by ȳl for labeled samples and ȳu

for unlabeled samples, respectively. We then generate virtual sample with MixUp [4],

η ∼ Beta(ε, ε), η∗ = Max(η, 1− η),

m = η∗xl + (1− η∗)xu, v = η∗ȳl + (1− η∗)ȳu,
(1)

where ε is a hyper-parameter and η ∈ [0, 1]. m is the generated sample and v is the pseudo-label
of m. The second constraint in Eq. 1 ensures that the generated sample m is closer to xl than xu.
This can alleviate the negative impact caused by unreliable pseudo-labels of unlabeled samples.

(b) Mix unlabeled examples with reliable anchors: We select the unlabeled samples that have
high class-probabilities as reliable anchors. Then, we mix the anchors with unlabeled samples
through OpenMix. Specifically, we perform this operation by replacing the labeled sample xl with
a reliable anchor in Eq. 1.

Given mixed samples M and their pseudo-labels V, we apply the L2-norm loss to train Open-
Mix, defined as,

Lopm = 1
|M|

∑
i∈M

1
Cl+Cu ‖vi − SoftMax(zmi )‖2, (2)

where |M| denotes the number of samples in M. zmi indicates the concentrated outputs of the
old and new classifiers. Specifically, we forward mi to the model and extract the outputs of the
old and new classifiers, which are represented as zli and zui , respectively. zmi is then obtained by
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concentrating zli and zui .

Experimental Analysis and Results. We evaluate our method on three image classification
benchmarks: CIFAR-10 [17], CIFAR-100 [17] and ImageNet [18]. We employ the clustering ACC
and Normalized Mutual Information (NMI) [19] as the metrics to evaluate the clustering perfor-
mance of new classes. Both metrics range from 0 to 1. Higher scores mean better performance.
For CIFAR-10 and CIFAR-100, we show the average results of 10 runs. For ImageNet, results
averaged in three different subsets are reported.

Table 1. Comparison with state-of-the-art methods on CIFAR-10, CIFAR-100 and ImageNet for novel class
discovery. Note that, RS [1] did not evaluate the NMI metric and did not provide results of 10-class setting on
CIFAR-100.

Method
CIFAR-10 CIFAR-100 ImageNet

ACC NMI ACC NMI ACC NMI

K-means [20] 65.5% 0.422 66.2% 0.555 71.9% 0.713

KCL [11] 66.5% 0.438 27.4% 0.151 73.8% 0.750

MCL [12] 64.2% 0.398 32.7% 0.202 74.4% 0.762

DTC [10] 87.5% 0.735 72.8% 0.634 78.3% 0.791

RS [1] 91.7% - - - 82.5% -

Ours 95.3% 0.879 87.2% 0.754 85.7% 0.827

In Table 1, we compare the proposed method with the state-of-the-art methods, including:
K-means [20], KCL [11], MCL [12], DTC [10] and RS [1]. Our baseline achieves very competitive
clustering performance compared with the state-of-the-art. The baseline is higher than DTC [10]
on CIFAR-10 and CIFAR-100, and slightly lower than DTC [10] on ImageNet. Moreover, it is
clear that our method outperforms the state-of-the-art methods by a large margin. Specifically,
our approach achieves 95.3% for CIFAR-10, 87.2% for CIFAR-100 and 85.7% for ImageNet in
clustering ACC. Both KCL [11] and MCL [12] use pairwise similarity for clustering learning.
However, these two method fail to produce competitive performance. For example, KCL and MCL
have similar results to K-means on CIFAR-10 and ImageNet, but are largely inferior to K-means
on CIFAR-100. Our method is significantly superior to KCL and MCL. Compared to DTC [10],
our method surpasses it in all three datasets, especially in CIFAR-100. RS [1] is the latest method,
which also uses the labeled data during unsupervised clustering. However, RS mainly focuses on
using labeled data to maintain the ACC in old classes. Compared to RS, our method outperforms
it by 3.6% and 3.2% in clustering ACC for CIFAR-10 and ImageNet, respectively.

3.2.2. Contrastive learning for novel class discovery

We also addressed the NCD problem by proposing a holistic learning framework that uses con-
trastive loss [8, 21] to learn discriminative features from both the labeled and unlabelled data.
This framework relies on two key ideas: (1) The local neighborhood of a sample (query) in the em-
bedding space will contain samples, which most likely belong to the same semantic category of the
query, and can be considered as pseudo-positives. (2) Addressing the better selection of negatives
to further improve the contrastive learning. Peculiar to the NCD task where we are given labeled
samples of the known classes (a.k.a true negatives of any unlabeled instance), we exploit them,
together with the unlabeled samples, to generate synthetic samples in the feature space using a
mixing strategy and treat them as hard negatives.
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Figure 2. The proposed neighborhood contrastive learning framework for novel class discovery. Given training
images sampled from the labeled and the unlabeled data, we forward them into the network to obtain corresponding
representations. For the labeled data, the CE loss, CS loss and the proposed NCL loss are calculated with the
ground-truth labels. For the unlabeled data, BCE loss and CS loss are computed to optimize the new classifier
while the NCL loss is proposed to learn discriminative representation. CE: cross-entropy, BCE: binary
cross-entropy, CS: consistency, NCL: neighborhood contrastive learning, HNG: hard negative generation.

Given a labeled dataset Dl and an unlabeled dataset Du, containing Cl and Cu classes respec-
tively (where the sets of classes in the two datasets are disjoint, but some degree of similarity be-
tween the two is necessary), the goal of NCD is to cluster the data in Du, leveraging the knowledge
from Dl. To discover the latent classes in Du, we learn a shared feature extractor Ω : x 7→ z ∈ RH
and two linear classifiers φl and φu, with Cl and Cu output neurons respectively, each followed by
a softmax layer. At each training step, a batch of images is sampled from both Du and Dl. Using
data augmentation we generate two correlated views of the same batch and forward them into the
feature extractor. The features of the labeled images are fed to the classifier φl, which is optimized
with the cross-entropy loss using the labels. By using the binary cross-entropy loss, the classifier
φu learns to infer the cluster assignments for the unlabeled images. Both classifiers are encouraged
to output consistent predictions using the consistency loss. The representations z are refined by
the proposed Neighborhood Contrastive Loss (NCL) on both labeled and unlabeled samples. The
overall framework is depicted in Fig. 2.

Our framework can be described in detail as follows. We first learn a label-agnostic image repre-
sentation by self-supervision learning [22] using both labeled and unlabeled datasets. Subsequently,
high-level features are learned using supervision on the labeled dataset. Given a sample and its
label, we optimize the network using the cross-entropy loss. The cluster discovery is performed by
using the cosine similarity of the features to estimate pairwise pseudo-labels. Specifically, given
a pair of images (xui , x

u
j ) sampled from dataset Du, we extract features (zui , z

u
j ) and compute

their cosine similarity δ
(
zui , z

u
j

)
= zu>i zuj /‖zui ‖‖zuj ‖. The pairwise pseudo-label is then assigned as

follows:
ŷi,j = 1

[
δ
(
zui , z

u
j

)
≥ λ

]
, (3)

where λ is a threshold that represents the minimum similarity for two samples to be assigned to
the same latent class. Then, the pairwise pseudo-label is compared to the inner product of the
outputs of the unlabeled head pi,j = φu (zui )

>
φu
(
zuj
)
. The network is optimized using the binary

cross-entropy loss:
`bce = −ŷi,j log (pi,j)− (1− ŷi,j) log(1− pi,j). (4)

The last building block is the consistency loss, which enforces the network produce similar predic-
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tions for an image xi and its correlated view x̂i. We use mean squared error :

`mse =
1

Cl

Cl∑
i=1

(
φli
(
zl
)
− φli

(
ẑl
))2

+

1

Cu

Cu∑
j=1

(
φuj (zu)− φuj (ẑu)

)2
.

(5)

The overall loss for this baseline reads as:

`base = `ce + `bce + ω (t) `mse, (6)

where the coefficient ω (t) is a ramp-up function.
Neighborhood Contrastive Learning is performed as follows. Given a set of stochastic image

transforms, we generate two correlated views (xu, x̂u) of a generic unlabeled sample to be used as
a positive pair. Subsequently, we apply the network Ω to extract (zu, ẑu) from the views. This
operation is repeated for all the samples of a batch of length B. We also maintain a queue Mu

of features stored from past training steps, which initially are regarded as negatives, denoted with
z̄u. The contrastive loss for the positive pair is written as:

`(zu,ẑu) = − log
eδ(z

u,ẑu)/τ

eδ(zu,ẑu)/τ +
∑|Mu|
m=1 e

δ(zu,z̄um)/τ
, (7)

where δ(·, ·) is the cosine similarity and τ is a temperature parameter that controls the scale of
distribution.

We generate pseudo-positive pairs of samples, i.e., to consider the neighbors of the representa-
tion zu as instances of the same class. To do so, we leverage the labeled dataset Dl to bootstrap
the representations, and then use them to infer the relationships between unlabeled examples in
Du. We can retrieve the top-k most similar features from the queue for a query zu:

ρk = argtopk
z̄ui

({δ (zu, z̄ui ) | ∀i ∈ {1, . . . , |Mu|}}) . (8)

Assuming the examples in ρk are false-negatives (i.e., they belong to the same class as zu), we can
regard them as pseudo-positives and write their contributions in the contrastive loss as follows:

`(zu,ρk) = −1

k

∑
z̄ui ∈ρk

log
eδ(z

u,z̄ui )/τ

eδ(zu,ẑu)/τ +
∑|Mu|
m=1 e

δ(zu,z̄um)/τ
. (9)

Finally, we can introduce our Neighborhood Contrastive loss as follows:

`ncl = α`(zu,ẑu) + (1− α) `(zu,ρk), (10)

where α controls the weight of the two components. In the case of the labeled dataset Dl, instead
of using the network to mine the pseudo-positives, we can directly use the ground-truth labels to
retrieve the set of positives from the queue of labeled set M l for a sample xli with features zli:

ρ =
{
z̄lj ∈M l : yi = yj

}
∪ ẑli. (11)

Note that ρ contains both the features ẑli of the correlated view x̂li and the other samples belonging
to the same class. Using this supervision, our Neighborhood Contrastive loss can be reduced to
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the Supervised Contrastive loss [23]:

`scl = − 1

|ρ|
∑
z̊lj∈ρ

log
eδ(z

l
i ,̊z

l
j)/τ

eδ(z
l
i,ẑ

l
i)/τ +

∑|M l|
m=1 e

δ(zli,z̄lm)/τ
. (12)

Hard Negative Generation is performed as follows. Given a view xu of an image belonging to
the unlabeled set and its representation in the feature space zu, we can select easy negatives by
looking at the features with minimal similarity in the queue Mu:

εk = argtopk
z̄ui

({−δ (zu, z̄ui ) | ∀i ∈ {1, . . . , |Mu|}}) . (13)

Let us also consider a queue M l containing labeled samples stored from past training steps.
These are by definition true negatives with respect to xu. For each z̄u ∈ εk we randomly sample a
feature z̄l ∈M l and compute the following:

ζ = µ · z̄u + (1− µ) · z̄l, (14)

where µ is the mixing coefficient. This process of cycling through εk is repeated N times such that
the resulting set of mixed negatives η will contain k×N features. Then, the hardest negatives are
filtered from η, using the cosine similarity as before:

ηk = argtopk
ζi

({δ (zu, ζi) | ∀i ∈ {1, . . . , k ×N}}) . (15)

This results in a set ηk of hard negatives. Finally the queue for xu is derived by adding the newly
generated mixed negatives into the queue Mu:

Mu′
= Mu ∪ ηk, (16)

and the contrastive loss is computed as in Eq. 7 and Eq. 9, but replacing Mu with Mu′
. This

pipeline for hard negative generation is repeated for each unlabeled sample in the current batch,
as they will have different sets of easy negatives.

Considering the baseline model, neighborhood contrastive learning on unlabeled data, super-
vised contrastive learning on labeled data, and the hard negative generation on unlabeled data,
the overall loss for our framework is:

`all = `base + `ncl + `scl. (17)

Experimental analysis and results. We conduct experiments on three datasets: CIFAR-10 [17],
CIFAR-100 [17] and ImageNet [18]. We employ average clustering ACC to evaluate the performance
of different methods on unlabelled data. We compare the proposed approach with k-means [20],
KCL [11], MCL [12], DTC [10] and RS [1]) in Table 2. Given these results we can conclude
that using self-supervised learning generally can improve the results of all methods, except when
evaluated k-means [20] on CIFAR-100. For example, when using self-supervised learning, the ACC
of KCL [11] is increased from 66.5% to 72.3% and from 14.3% to 42.1% on CIFAR-10 and CIFAR-
100, respectively. This indicates the effectiveness of self-supervised learning. Second, two versions
of our method outperform the state-of-the-art methods (whether using self-supervised learning or
not) by a large margin on all datasets, especially on CIFAR-100 and ImageNet. Specifically, our
full method achieves ACC=93.4% on CIFAR-10, ACC=86.6% on CIFAR-100 and ACC=90.7% on
ImageNet, respectively. These results are higher than RS [1] by +3% on CIFAR-10, +13.4% on
CIFAR-100 and +8.2% on ImageNet, respectively.
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Table 2. Comparison with state-of-the-art methods on CIFAR-10, CIFAR-100 and ImageNet for novel class
discovery. Clustering ACC is reported on the unlabelled set. “*” indicates methods that initialize models with
self-supervised learning, except when evaluated on ImageNet. Ours: our method with both neighborhood
contrastive learning and hard negative generation, Ours w/o HNG: our method without hard negative generation.

Method CIFAR-10 CIFAR-100 ImageNet

Methods without self-supervised learning

k-means [20] 65.5±0.0% 56.6±1.6% 71.9%

KCL [11] 66.5±3.9% 14.3±1.3% 73.8%

MCL [12] 64.2±0.1% 21.3±3.4% 74.4%

DTC [10] 87.5±0.3% 56.7±1.2% 78.3%

Methods with self-supervised learning

k-means [20]∗ 72.5±0.0% 56.3±1.7% 71.9%

KCL [11]∗ 72.3±0.2% 42.1±1.8% 73.8%

MCL [12]∗ 70.9±0.1% 21.5±2.3% 74.4%

DTC [10]∗ 88.7±0.3% 67.3±1.2% 78.3%

RS [1]∗ 90.4±0.5% 73.2±2.1% 82.5%

Ours∗ w/o HNG 93.4±0.2% 82.3±2.6% 89.5%

Ours∗ 93.4±0.1% 86.6±0.4% 90.7%

3.2.3. Relevant publications

• Z. Zhong, L. Zhu, Z. Luo, S. Li, Y. Yang, N. Sebe, OpenMix: Reviving Known Knowledge
for Discovering Novel Visual Categories in an Open World, CVPR 2021 [24].
Zenodo record: https://zenodo.org/record/5014206.

• Z. Zhong, E. Fini, S. Roy, Z. Luo, E. Ricci, N. Sebe, Neighborhood Contrastive Learning for
Novel Class Discovery, CVPR 2021 [25].
Zenodo record: https://zenodo.org/record/5014108.

3.2.4. Relevant software and/or external resources

• The Pytorch implementation of our work ”Neighborhood Contrastive Learning for Novel
Class Discovery” can be found in https://github.com/zhunzhong07/NCL.

3.2.5. Relevant WP8 Use Cases

Our tools on novel class discovery contribute to use cases (a) 3A3 and 4C1 by providing solutions to
analyze visual content, and (b) 7A3 by supporting the organization of image and video collections.

3.3. Comparative Study of Class-Incremental Learning Algorithms (Task 3.1)

Contributing partners: CEA
The ability of artificial agents to augment their capabilities when confronted with new data is an
open challenge in artificial intelligence. The main challenge faced in such cases is catastrophic for-
getting, i.e., the tendency of neural networks to underfit past data when new ones are ingested. A
first group of approaches tackles forgetting by increasing deep model capacity to accommodate new
knowledge. A second type of approaches fix the deep model size and introduce a mechanism whose
objective is to ensure a good compromise between stability and plasticity of the model. While
the first type of algorithms were compared thoroughly, this is not the case for methods which
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exploit a fixed size model. Here, we focus on the latter, place them in a common conceptual and
experimental framework and discuss the following contributions: (1) define six desirable properties
of incremental learning algorithms and analyze them according to these properties, (2) propose
a common evaluation framework which is more thorough than existing ones in terms of number
of datasets, size of datasets, size of bounded memory and number of incremental states, and (3)
provide experimental evidence that it is possible to obtain competitive performance without the
use of knowledge distillation to tackle catastrophic forgetting. The main experimental finding is
that none of the existing algorithms achieves the best results in all evaluated settings. Impor-
tant differences arise notably if a bounded memory of past classes is allowed or not. A detailed
description of the contributions summarized here is available in [26].
Desirable Properties of Incremental Learning Algorithms. We define a common analysis
framework made of six desirable properties of incremental learning algorithms. This set of prop-
erties builds on the one proposed in [27], which already includes three of them (marked with *
below):

1. Complexity (C)* - capacity to integrate new information with a minimal change in terms
of the model structure. For a deep neural network, only the size of the classification layer
should grow. Otherwise, the total number of parameters of the model is likely to increase
strongly, especially at large scale.

2. Memory (M)* - ability to work with or without a fixed-size memory of past classes. Natu-
rally, algorithms that do not require past data are preferable, but their performance is likely
to be lower, especially if complexity growth is minimized.

3. Accuracy (A)* - performance for past and new classes should approach that of a non-
incremental learning process that has access to all data at all times.

4. Timeliness (T) - delay needed between the occurrence of new data and their integration in
the incremental models.

5. Plasticity (P) - capacity to deal with new classes that are significantly different from the
ones that were learned in the past [28].

6. Scalability (S) - the aptitude to learn a large number of classes, typically up to tens of
thousands, and ensure usability in complex real-world applications.

A mapping of different groups of existing approaches with respect to the desirable properties
described above is provided in Table 3. The main finding here is that each group is characterized
by a combination of strengths and limitations. This happens because it is impossible to satisfy all
desirable properties jointly. The practical choice of one approach over the others should be done
with respect to the application needs and constraints.
Experimental analysis and results. We compare state of the art methods and modified ver-
sions of them using four public datasets: ILSVRC [48] - fine-grained object recognition, VG-
GFACE2 [49] - face recognition, Google Landmarks [50] (LANDMARKS below) - tourist
landmark recognition, and CIFAR100 [51] - basic-level object recognition. The first three datasets
include 1000 classes and the fourth includes 100 classes. We vary the number of incremental states
and the available memory for each dataset since these are the two most important parameters of
the class IL scenario. Note that the that performance for the setting without memory is analyzed
separately since the absence of memory makes a part of existing methods unusable. Results are
presented for a series of competitive existing methods, which exploit knowledge distillation, and
versions of them in which the knowledge distillation is ablated.
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Table 3. Analysis of the main groups of incremental learning algorithms with respect to their desirable properties.
A global assessment with recommended use cases is also provided.

Model-Growth based Fixed-Representation based Fine-Tuning based
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y

The model evolves by adding pa-
rameters and weights to intercon-
nect them [29, 30, 31] or small net-
works [32] to include new knowl-
edge. The challenge is to optimize
the effect of model growth on per-
formance [33, 29].

The model is fixed after the first
step. In a basic setting [34,
35], the only parameters added
are those needed for new classes
weights, but additional parame-
ters can be added to improve sta-
bility [36].

This group of IL methods work
with a fixed structure of the back-
bone model. The number of pa-
rameters is only marginally af-
fected by the modifications of the
classification layer [37, 38, 39].

M
em

o
ry

The model growth allows for
the deployment of these methods
without the use of an exemplar
memory. Memory is allocated to
additional model parameters and
weights instead of raw data for
past classes, which is a more parsi-
monious way to store information
about past classes [40, 32, 41].

Fixed-representations do not up-
date the model during the incre-
mental learning process and thus
have a very low dependency on the
memory of past classes [34]. Class
weights are learned when they are
first encountered and can be used
throughout all subsequent incre-
mental states.

Performance is heavily dependent
on the size of the past memory.
However, storing a large amount
of past exemplars is contradictory
to IL objectives. Memory needs
are reduced by exploiting knowl-
edge distillation [37, 38, 42, 39] or
by exploiting statistical properties
of past states [43, 44].

A
cc

u
ra

cy

Performance is correlated to the
amount of model growth allowed.
If growth is limited, MG-based
methods have lower performance
compared to FT-based ones [33].
A significant growth [41] gives per-
formance comes close to that of
classical learning, but limits the
interest of these methods.

Accuracy is lower compared to
FT-based methods because the
model is not updated incre-
mentally. High performance
can be obtained with fixed-
representations if the initial model
is learned with a large dataset [34],
but the existence of such a dataset
is a strong assumption in IL.

Recent approaches report strong
performance gain compared to
previous work such as [37, 42, 27]
through more sophisticated defini-
tions of distillation [38] or through
the casting of IL as an imbalanced
learning problem [43, 44] or a com-
bination of both [39].

T
im

e
li
n
e
s
s

The complexity of model growth is
similar to that of FT-based meth-
ods since retraining is needed for
each incremental update [33].

Only the classifier weights layer
needs to be trained and new
knowledge is integrated in a
timely manner [45].

New classes are not recognizable
until retraining is finished, which
is problematic for time-sensitive
applications.

P
la

st
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MG-based methods are specifi-
cally designed to cope with differ-
ent visual tasks [40, 46]. The chal-
lenge is to minimize the amount of
additional parameters needed to
accommodate each new task [33].

Plasticity is limited since the rep-
resentation is learned in the first
state and then fixed. Performance
drops significantly if the incremen-
tal tasks change a lot and the ini-
tial representation is not transfer-
able anymore [47].

The model updates enable adap-
tation to new data as they are
streamed into the system. If no
memory is allowed, plasticity is
too important and this shift is
controlled through knowledge dis-
tillation or imbalance handling.
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These methods scale well to new
classes or tasks as long as the sys-
tems in which they are deployed
have sufficient resources to sup-
port the underlying model growth
for training and inference phases.

The dependence on the bounded
memory is limited and FR-based
methods can include many classes.
This is possible because class
weights are learned in their initial
state and reused later.

The size of the bounded mem-
ory determines the number of past
classes for which exemplars can be
stored and which are still recog-
nizable when new ones are inte-
grated.
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Approaches in this group cope
well with new data, are not or
weakly dependent on a mem-
ory, and are scalable to many
classes. However, complexity is
a disadvantage since the model
has to grow in order to in-
tegrate new knowledge. They
also require retraining when new
classes are added, and timeliness
is not optimal. They are usable
when: model complexity can be
increased, streamed data vary a
lot, no memory is allowed and
timeliness is not essential.

Fixed-representation methods in-
herit the advantages and dis-
advantages of transfer learning
schemes. Model complexity is
constant and they can be updated
in a timely manner. They do not
depend on memory and are scal-
able. However, they depend on
the quality of the initial repre-
sentation and have a low plastic-
ity. They are usable when: model
complexity should stay constant,
data variability is low, no mem-
ory is available and updates are
needed in a timely manner.

FT methods are adequate when
trying to optimize the architecture
complexity and the plasticity [28]
of representations. They are not
timely since retraining is required.
The use of a fixed memory limits
their use at very large scale. They
are usable when: model complex-
ity is fixed, streamed data vary a
lot, storage is available for past
data and timeliness is not essen-
tial.
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Table 4. Top-5 average incremental accuracy (%) for IL methods using different memory sizes and numbers of
incremental states. GIL is an aggregated score over all configurations tested which measures the gap with a
classical learning (noted Full). Best results are in bold.

States T = 10 |K| = 0.5%

GILDataset ILSVRC VGGFACE2 LANDMARKS CIFAR100 ILSVRC VGGFACE2 LANDMARKS CIFAR100

|K| 2% 1% 0.5% 2% 1% 0.5% 2% 1% 0.5% 2% 1% 0.5% T=20 T=50 T=20 T=50 T=20 T=50 T=20 T=50

iCaRL[27] 79.3 76.5 71.0 96.0 95.3 93.9 95.1 94.0 91.8 66.5 56.1 47.9 55.9 45.0 88.5 78.2 86.8 82.4 35.5 35.4 -7.36

LUCIRCNN [38] 79.9 76.4 72.6 97.2 96.9 96.5 97.2 96.6 96.1 79.8 75.4 69.9 63.9 55.3 93.5 88.3 93.7 90.5 53.5 47.9 -4.13

LUCIRNEM [38] 80.5 80.0 79.4 96.2 96.0 95.7 95.4 94.9 94.4 82.6 80.8 78.8 73.6 66.3 92.7 87.9 91.9 89.8 69.0 63.0 -4.33

FT [43] 79.4 74.4 65.9 96.4 94.5 91.3 96.6 94.7 91.4 82.4 77.9 70.7 69.4 64.3 91.6 89.2 90.9 89.0 64.3 54.8 -5.19

FTNEM [26] 81.4 79.0 75.0 96.4 95.4 94.0 96.1 94.6 92.6 85.1 81.7 76.0 76.5 69.0 94.0 91.1 91.9 89.9 68.8 55.9 -4.28

FTBAL [26] 84.0 80.9 76.5 97.0 95.7 92.4 96.9 95.3 92.2 80.0 74.0 69.0 75.9 67.1 92.3 89.5 91.2 88.9 62.9 54.2 -4.70

BiC [39] 85.5 82.8 79.7 97.3 96.6 95.7 97.9 97.3 96.6 88.8 87.6 83.5 74.6 63.9 92.3 85.3 94.7 90.5 50.5 19.6 -4.03

ScaIL [44] 82.0 79.8 76.6 96.5 95.8 95.2 97.3 96.0 94.0 85.6 83.2 79.1 76.6 70.9 95.0 92.4 92.6 90.4 69.8 51.0 -3.70

IL2M [43] 80.9 78.1 73.9 96.7 95.4 93.4 96.5 94.7 92.5 81.8 77.0 71.2 70.9 60.6 92.5 88.4 90.8 88.1 61.5 51.0 -4.95

FT th [26] 84.3 82.1 78.3 97.2 96.3 94.8 97.2 95.8 94.0 86.4 83.9 79.1 78.6 71.2 94.3 91.6 92.9 90.7 71.4 57.9 -3.62

FT initL2 [52] 79.2 76.5 73.0 95.9 95.2 94.6 97.0 95.5 92.7 83.4 80.5 75.2 73.6 67.3 94.6 91.4 91.2 88.5 63.6 44.1 -4.43

FR [27] 76.7 76.6 76.4 91.7 91.5 89.7 93.8 93.5 93.5 79.5 79.4 78.7 69.2 58.2 85.8 75.2 89.3 82.8 62.3 33.5 -7.62

DeeSIL [34] 75.5 75.1 74.3 92.7 92.5 92.2 94.0 93.7 93.2 66.9 65.8 64.2 73.0 58.1 87.2 80.0 90.5 85.1 63.9 44.0 -6.92

REMIND [53] 80.9 80.7 78.2 94.7 93.2 93.0 96.3 95.8 94.7 60.7 60.7 60.7 73.9 65.0 87.4 80.1 92.8 88.6 52.8 46.4 -6.02

Full 92.3 99.2 99.1 91.2 92.3 99.2 99.1 91.2 -

The results presented in Table 4 indicate that the best overall performance is obtained with
FT th, a method which considers IL with memory as a sub-problem of imbalanced learning [54]. It
corrects the bias in favor of new (majority) classes by correcting initial class predictions with a term
which boosts past (minority) classes. Interestingly, FT th does not exploit knowledge distillation
which is extensively used in class IL to preserve the stability of incremental deep representations.
The second best aggregated performance is obtained with ScaIL [44], a method which scales
classifier weights to make them more comparable between new and past classes. BiC [39], which
adds a linear layer for bias correction, also has a very interesting behavior. It outperforms other
methods for T = 10 states but has poorer behavior for larger number of states. This is explained
by the fact that BiC needs a validation set whose size needs to be sufficient in order to optimize
the bias correction layer. This size is clearly not sufficient, especially for small and medium sized
datasets such as CIFAR100. Globally, strong progress was achieved in class IL with memory
between the proposal of iCaRL [27] in 2017 and today. However, the gap with a classical training
which has access to the full dataset at all times remains important. IL with memory thus remains
and open research topic.

The results for class IL without memory are presented in Table 5. Here, the best overall
results are obtained with DeeSIL [34], a simple method which is based on the transfer of fixed
representations learned in the initial state of the IL process. This result is intriguing insofar
it interrogates the progress made in class IL without memory which is based, in a majority of
cases, on the use of knowledge distillation [27, 38]. However, we note that fixed representations
are strongly dependent on the quality of the fixed initial representations. Their performance drops
significantly when the initial representation is learned with a small number of classes (large T value
for large datasets or small datasets overall). Deep − SLDA [45], which is also based on a fixed
representation but uses a more refined training procedure compared to DeeSIL, has the second
best global performance. FT initsiw+mc [52], which exploits normalized initial classifier weights in later
incremental states, has the best performance among the fine-tuning based methods tested. It does
not exploit knowledge distillation, which is classically implemented by methods such as LwF [27]
and LUCIRCNN [38]. The results from Table 5 lead us to conclude that class IL without memory
is a very open topic. Research is particularly needed in order to make fine-tuning-based methods
competitive with fixed-representation-based methods.
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Table 5. Top-5 average incremental accuracy (%) for IL methods without memory for past classes and different
numbers of incremental states. GIL is an aggregated score over all configurations tested which measures the gap
with a classical learning (noted Full). Best results are in bold.

Dataset ILSVRC VGGFACE2 LANDMARKS CIFAR100
GIL

States T=10 T=20 T=50 T=10 T=20 T=50 T=10 T=20 T=50 T=10 T=20 T=50

LwF [27] 45.3 37.6 27.1 53.3 42.6 30.8 58.8 49.2 35.2 79.5 65.3 39.0 -34.72

LwF init [52] 47.1 39.9 32.2 58.1 50.8 40.5 55.7 50.2 39.8 79.4 67.9 42.8 -31.97

LwF initL2 [52] 24.5 39.7 32.0 57.1 50.7 40.5 52.1 50.5 40.0 79.5 68.1 43.3 -32.60

LwF initsiw [52] 54.0 45.8 35.1 70.4 59.3 45.2 61.0 53.8 42.2 80.0 68.8 44.6 -28.06

LUCIRCNN [38] 57.6 39.4 21.9 91.4 68.2 32.2 87.8 63.7 32.3 57.5 35.3 21.0 -24.75

FT [29] 20.6 13.4 7.1 21.3 13.6 7.1 21.3 13.6 7.1 21.3 13.7 17.4 -54.91

FT init [52] 61.0 44.9 23.8 90.9 64.4 33.1 68.8 49.4 22.2 55.1 40.8 19.9 -28.99

FT initL2 [52] 51.6 43.3 34.5 76.8 66.8 55.1 61.4 52.5 39.2 47.5 39.3 22.5 -26.80

FT initL2+mc [52] 53.6 42.7 35.6 86.9 71.4 53.6 66.2 52.6 37.9 52.6 43.1 18.2 -25.02

FT initsiw+mc [52] 64.4 54.3 41.4 88.6 84.1 62.6 79.5 64.5 43.2 59.7 44.3 18.4 -19.38

FR [27] 74.0 66.9 49.2 88.7 83.0 54.4 93.6 88.1 71.2 73.1 54.8 27.4 -16.30

DeeSIL [34] 73.9 67.5 53.9 92.3 87.5 75.1 93.6 91.1 82.1 65.2 63.4 32.3 -9.22

REMIND [53] 62.2 56.3 44.4 86.8 81.4 69.2 84.5 79.6 69.0 52.7 40.5 25.7 -22.00

Deep-SLDA [45] 70.3 64.5 56.0 90.2 85.4 78.2 89.3 86.4 81.3 68.9 64.4 54.5 -15.40

Full 92.3 99.2 99.1 91.2 -

3.3.1. Relevant publications

• E. Belouadah, A. Popescu, I. Kanellos, A comprehensive study of class incremental learning
algorithms for visual tasks, Neural Networks, 2020 [26].
Zenodo record: https://zenodo.org/record/4462956.

3.3.2. Relevant software and/or external resources

• The Python implementation of ”several class incremental learning methods” can be found in
https://github.com/EdenBelouadah/class-incremental-learning

3.3.3. Relevant WP8 Use Cases

This tool can be exploited in the following use cases: (1) UC2 (2A and 2B) because incremental
learning allows AI systems to process new topics which appear in news and thus improve tagging
and search capabilities, (2) UC3 (3C) because the automatic management of unexpected jour-
nalistic events requires a swift update of recognition models for relevant content such as faces or
company brands.

3.4. DNN Education (Task 3.1)

Contributing partners: AUTH

AUTH research in T3.1 revolves around the concept of Deep Neural Network (DNN) “educa-
tion”, a proposed dynamic adaptation framework for neural models that combines and unifies Out-
of-Distribution (OOD) detection, incremental/continual/lifelong learning and neural distillation.
The envisioned framework will allow interacting, pretrained DNNs to on-the-fly and dynamically
self-assess their knowledge about current unknown/novel/test data points and, if they deem it nec-
essary, request relevant retraining from dynamically and autonomously discovered teacher models,
without forgetting their past knowledge. The main novelty entails on-the-fly, automated knowledge
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exchanges within the grid of participating DNN models, with dynamic, ad-hoc and autonomously
assigned student-teacher roles. In order to provide a proof-of-concept prototype within the span
and context of the AI4Media project, AUTH focuses on Convolutional Neural Networks (CNNs)
for image classification. Overall, the proposed DNN education framework is complementary to the
rest of T3.1, which focuses specifically on scientific advances in lifelong learning.

During M1-M12 of the project, AUTH research focused on the first ingredient of the DNN
education framework, i.e., Out-of-Distribution detection (OOD) for DNNs. To this end, a survey of
the relevant state-of-the-art was conducted, resulting in a technical report that has been submitted
as a conference paper. The survey presents an overview and a taxonomy of related methods, as
well as typical evaluation datasets and metrics. Without loss of generality, the focus is on image
classification using Convolutional Neural Networks (CNNs).

Besides this survey, AUTH also performed research on two novel OOD detection algorithms,
which is still on-going. They are detailed in the following two subsections.

3.4.1. Adversarial Out-of-Distribution Detection using Regularized Reconstructions

Typical OOD detection methods for DNNs fall under either the discriminative or the generative
family. Both approaches rely on comparing test data points with the training dataset, irrespective
of the actual DNN model being employed during inference. A more modern approach is to design
model-specific variants of similar discriminative or generative models, where the representations of
the input data points constructed internally by the classifier DNN may also be used for distinguish-
ing between in-distribution (ID) and OOD data [55, 56, 57, 58, 59, 60, 61, 62]. Additionally, several
different methods have been proposed that rely on directly or indirectly measuring epistemic un-
certainty (i.e., uncertainty due to lack of relevant knowledge encoded in the model parameters) for
each test-time prediction [63, 64, 65, 66].

The first line of AUTH research during M1-M12 of the project was to design a novel model-
specific OOD detector for pretrained image classification CNN models, which does not require
example OOD datasets during training. Thus, assuming such a classification CNN model has been
pretrained on in-distribution (ID) dataset K, the goal is for a separate OOD detection DNN model
to be able to discriminate, during inference, whether each test/unknown data point (image) Xi

has been sampled from the data distribution of K or from that of a different, unknown, OOD
dataset L.

A DenseNet [67] with depth L = 100 and growth rate k= 12 (Dense-BC) was employed as the
base image classification CNN, with the output of its first Transition Layer during the inference
stage forming the input of the proposed OOD detector. The proposed method is evidently model-
specific, since it processes early-layer convolutional features computed by the pretrained (on K)
DenseNet-based classifier, instead of the raw RGB test-stage images.

The proposed OOD detection architecture consists of a Convolutional Autoencoder (CA) and
a Generative Adversarial Network (GAN) [68], composed of a Generator G Discriminator D. The
CA and the the GAN are trained separately and consecutively, while during the inference stage of
the OOD detector G is not needed; it can be discarded after training the GAN. The CA follows
the Encoder-Decoder paradigm and is trained using ID data from K. The Encoder gradually
shrinks (w.r.t. both the spatial dimensions and the number of channels) its tensorial input, i.e.,
the output Yi ∈ RM×N×C of the first Dense-BC Transition Layer, while the Decoder gradually
recovers the original input. The respective reconstructed outputs of the CA, i.e., Ỹi ∈ RM×N×C ,
∀i ∈ K, are subtracted from the corresponding inputs in order to form reconstruction error maps
Ei ∈ RM×N×C ,∀i ∈ K, where:

Ei = Ỹi −Yi. (18)
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The GAN is trained so as to approximate the data distribution of the computed Ei,∀i ∈ K.
Thus, D is a binary classifier trained so as to discriminate reconstruction error maps computed
by the CA on ID data and on OOD data. The underlying idea is that the CA will most likely
reconstruct significantly better any ID data rather than OOD data during the inference stage, thus
facilitating D in its job. The naive alternatives would be:

• to directly train a GAN on all Yi derived from K, so as to implicitly capture the ID data
distribution in the feature space, without a CA, or

• directly compute the quality of the reconstruction (e.g., by reducing each reconstruction error
map into a scalar reconstruction error) and threshold it, so as to discriminate between ID
and OOD data without a Discriminator.

However, the former naive scenario would ignore discriminant information captured by the quality
of the CA reconstruction, while the latter one would require manual and brittle threshold tuning.

According to work performed up to now, a key component of the process is the degree of
restraining the ability of CA to reconstruct its input, i.e., how to keep the generalization ability
of the CA under check, in order to retain discrimination between ID and OOD data. To this end,
different regularizers applied on the intermediate, latent representation (the output of the Encoder)
during training the CA are currently being compared.

This is still on-going research, expected to be completed and submitted in paper form until the
end of 2021.

3.4.2. Out-Of-Distribution Detection for Self-Supervised Monocular Depth Map Es-
timation

A second line of AUTH research regarding OOD detection that was pursued during M1-M12
concerned DNN-based dense image prediction tasks, instead of simple classification. This is a
much less explored area, with relatively sparse existing literature. For instance, [69] focused on
semantic image segmentation and derived inference-stage uncertainty for different image regions,
by estimating segmentation quality for each predicted segment using statistical properties of the
output segmentation map. In a different approach for OOD detection in semantic segmentation
[70], spatial entropy heatmaps and related entropy thresholds first determine whether each pixel is
OOD. Subsequently, the process is further improved at the segment level, using aggregated statis-
tical properties of the segmentor’s output and geometrical characteristics of the derived segments.
A different, non-supervised dense image prediction task is self-supervised monocular depth map
estimation from subsequent video frames. OOD detection literature for this task is even more
limited, despite the importance of robust visual depth map estimators in fields such as robotics.
For example, in [71], visual odometry data are exploited to train an autoencoder alongside a depth
estimator, with the former one enforcing consistency in the losses during training, reducing the
number of OOD samples. In contrast, in [72] a self-teaching method is proposed, where two archi-
tecturally identical instances of the depth estimation DNN Monodepth2 [73] are consecutively in
a teacher-student fashion relying essentially on neural knowledge distillation: the teacher is first
optimized in the typical self-supervised manner, while the student exploits the teacher outputs
as direct supervision targets. Then, the differences between student and teacher inference-stage
predictions on the training set are exploited in order to learn an uncertainty prediction model.
Finally, in [74], a very simple method is proposed: each test-stage video frame pair is forwarded
along the pretrained depth estimation DNN twice: once in its regular form and once in its hori-
zontally flipped form; the absolute difference between the two respective predicted depth maps is
exploited as an uncertainty estimator.
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Partly inspired from [72] and [74], but following a different approach, AUTH is investigating an
OOD detection method relying on two entirely different DNN architectures that are independently
and consecutively trained for self-supervised monocular depth map estimation on the same training
set. The first one is a typical depth map estimator, such as Monodepth2 [73], while the second
one is an Image-to-Image Translator (I2I) based on Conditional GANs [75]. Thus, not only the
neural architectures differ between them, but also the learning paradigms and the corresponding
loss functions (self-supervised versus adversarial learning). The I2I Translator is optimized using
the depth maps derived by the trained Monodepth2 DNN as targets; therefore, a self-teaching
component is evident in the proposed method, as in [72]. During the inference stage, each test
image is fed to both models and both predict a depth map. As in [74], the difference between
these two depth maps is employed as a prediction uncertainty indicator and, by thresholding the
uncertainty, as an OOD detector. The underlying intuition is that the two neural architectures will
most likely give rise to similar outputs when fed ID data, but their predictions will tend to vary
widely for OOD data due to their very different architectural properties and learning paradigms.

This is still on-going research, expected to be completed and submitted in paper form until the
end of 2021.

3.4.3. Relevant publications

• I. Mademlis, I. Pitas, ”Out-Of-Distribution Detection for Deep Convolutional Neural Net-
works: An Overview”, technical report, submitted as conference paper [76].

3.5. Towards Compatible Lifelong Learning Representations (Task 3.1)

Contributing partners: UNIFI

We are investigating novel methods to learn internal feature representations models that are
compatible with previously learned ones. Compatible features allow “new” learned features to be
compared directly to “old” features, so they can be used interchangeably in time. This enables
visual search systems to avoid extracting new features for all previously seen images (i.e., the
gallery-set) when updating the representation model. Extracting new features is typically quite
expensive or infeasible in the case of very large gallery-sets (i.e., face-recognition systems, social
networks, life-long learning systems, autonomous robotics). Our method trains representation
models exploiting pre-allocated fixed classifier based on regular polytopes [77]. Recently, these
classifiers have been shown to enable learning of stationary feature representation without affecting
classification performance [78]. Our objective is to use these two “parts” to obtain a lifelong
compatible learning system. Concisely stationarity ⇒ compatibility (i.e. if features “move” they
cannot be compatible with old features, therefore we want to keep them as stationary as possible
while learning). Our method is based on the fact that RePoNets [77],[78] ⇒ stationarity). Our
ongoing investigation (under review) is the chaining of the two implications to obtain: RePoNets
⇒ stationarity ⇒ compatibility.

3.5.1. Regular Polytope Networks

Deep Convolutional Neural Networks (DCNNs) have achieved state-of-the-art performance on a
variety of tasks [79, 80] and have revolutionized Computer Vision in both classification [81, 82]
and representation [83, 84]. In DCNNs, both representation and classification are typically jointly
learned in a single network. The classification layer placed at the end of such models transforms
the d-dimension of the network internal feature representation to the K-dimension of the output
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class probabilities. Despite the large number of trainable parameters that this layer adds to the
model (i.e. d×K), it has been verified that its removal only causes a slight increase in error [85].
Moreover, the most recent architectures tend to avoid the use of fully connected layers [86] [87]
[14]. It is also well known that DCNNs can be trained to perform metric learning without the
explicit use of a classification layer [88] [89] [90]. In particular, it has been shown that excluding
from learning the parameters of the classification layer causes little or no decline in performance
while allowing a reduction in the number of trainable parameters [91]. Fixed classifiers also have
an important role in the theoretical convergence analysis of training models with batch-norm [92].
Very recently it has been shown that DCNNs with a fixed classifier and batch-norm in each layer
establish a principle of equivalence between different learning rate schedules [93].

All these works seem to suggest that the final fully connected layer used for classification is
somewhat redundant and does not have a primary role in learning and generalization. In this
paper we show that a special set of fixed classification layers has a key role in modeling the internal
feature representation of DCNNs, while ensuring little or no loss in classification accuracy and a
significant reduction in memory usage.

In DCNNs the internal feature representation for an input sample is the feature vector f gener-
ated by the penultimate layer, while the last layer (i.e. the classifier) outputs score values according
to the inner product as:

zi = w>i · f (19)

for each class i, where wi is the weight vector of the classifier for the class i. To evaluate the loss,
the scores are further normalized into probabilities via the softmax function [94].

Since the values of zi can be also expressed as zi = w>i · f = ||wi|| ||f || cos(θ), where θ is the
angle between wi and f , the score for the correct label with respect to the other labels is obtained
by optimizing the length of the vectors ||wi||, ||f || and the angle θ they are forming. This simple
formulation of the final classifier provides the intuitive explanation of how feature vector directions
and weight vector directions align simultaneously with each other at training time so that their
average angle is made as small as possible. If the parameters wi of the classifier in Eq. 19 are
fixed (i.e. set as non-trainable), only the feature vector directions can align toward the classifier
weight vector directions and not the opposite. Therefore, weights can be regarded as fixed angular
references to which features align.

According to this, we obtain a precise result on the spatio-temporal statistical properties of the
generated features during the learning phase. Supported by the empirical evidence in [91] we show
that not only the final classifier of a DCNN can be set as non-trainable with no loss of accuracy and
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Figure 3. RePoNet. The fixed classifiers derived from the three regular polytopes available in Rd with d ≥ 5 are
shown. From left: the d-Simplex, the d-Cube and the d-Orthoplex fixed classifier. The trainable parameters wi of
the classifier are replaced with fixed values taken from the coordinate vertices of a regular polytope (shown in red).
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Figure 4. Feature learning on the MNIST dataset in a 2D embedding space. Fig. (a) and Fig. (c) show the 2D
features learned by RePoNet and by a standard trainable classifier respectively. Fig. (b) and Fig. (d) show the
training evolution of the classifier weights (dashed) and their corresponding class feature means (solid)
respectively. Both are expressed according to their angles. Although the two methods achieve the same
classification accuracy, features in the proposed method are both stationary and maximally separated.

with a significant reduction in memory usage, but that an appropriate set of values assigned to its
weights allows learning a maximally separated and strictly stationary embedding while training.
That is, the features generated by the Stochastic Gradient Descent (SGD) optimization have
constant mean and are angularly centered around their corresponding fixed class weights. Constant
known mean implies that features cannot have non-constant trends while learning. Maximally
separated features and their stationarity are obtained by setting the classifier weights according to
values following a highly symmetrical configuration in the embedding space.

DCNN models with trainable classifiers are typically convergent and therefore, after a sufficient
learning time has elapsed, some form of stationarity in the learned features can still be achieved.
However, until that time, it is not possible to know where the features will be projected by the
learned model in the embedding space. An advantage of the approach proposed in this paper is
that it allows to define (and therefore to know in advance) where the features will be projected
before starting the learning process.

Our result can be understood by looking at the basic functionality of the final classifier in a
DCNN. The main role of a trainable classifier is to dynamically adjust the decision boundaries
to learn class feature representations. When the classifier is set as non-trainable this dynamic
adjustment capability is no longer available and it is automatically demanded to all the previous
layers. Specifically, the work [91] reports empirical evidence that the expressive power of DCNN
models is large enough to account for the missing dynamic adjustment capability of the classifier.
We provide more systematic empirical evidence confirming and broadening the general validity of
DCNNs with fixed classifiers (see [78]).

We show that our approach can be theoretically justified and easily implemented by setting
the classifier weights to values taken from the coordinate vertices of a regular polytope in the
embedding space. Regular polytopes are the generalization in any number of dimensions of regular
polygons and regular polyhedra (i.e. Platonic Solids). Although there are infinite regular polygons
in R2 and 5 regular polyhedra in R3, there are only three regular polytopes in Rd with d ≥ 5,
namely the d-Simplex, the d-Cube and the d-Orthoplex. Having different symmetry, geometry
and topology, each regular polytope will reflect its properties into the classifier and the embedding
space which it defines. Fig. 3 illustrates the three basic architectures defined by the proposed
approach termed Regular Polytope Networks (RePoNet). Fig. 4 provides a first glance at our main
result in a 2D embedding space. Specifically, the main evidence from Fig. 4(a) and 4(b) is that the
features learned by RePoNet remain aligned with their corresponding fixed weights and maximally
exploit the available representation space directly from the beginning of the training phase.

We apply our method to multiple vision datasets showing that it is possible to generate station-
ary and maximally separated features without affecting the generalization performance of DCNN
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models and with a significant reduction in GPU memory usage at training time. A preliminary
exploration of this work was presented in [95, 96].

3.5.2. Class-incremental Learning with Pre-allocated Fixed Classifiers

Natural intelligent systems learn incrementally by continuously receiving information over time.
They learn new concepts adapting to changes in the environment by leveraging past experiences.
A remarkable capability of these systems is that learning of new concepts is achieved while not
forgetting previous ones. In contrast, current Deep Learning models, when updated with novel
incoming data, suffer from catastrophic forgetting : the tendency of Neural Networks to completely
and abruptly forget previously learned information [97, 98, 99]. This problem is related to the plas-
ticity/stability dilemma in incremental learning [100]. Too much “plasticity” leads to catastrophic
forgetting, too much “stability” leads to an inability to adapt to novel information. Continual
Learning [101, 3] specifically addresses this problem, bringing machine learning closer to natural
learning. In this learning scenario, the agent is presented with a stream of tasks and each new task
is learned by reusing and combining the knowledge acquired while learning previous tasks. As the
learning agent is processing a stream, it cannot store all examples seen in the past.

Continual learning has recently received increasing attention and several methods have been
developed [102, 103, 104, 105, 106, 107, 108, 109]. However, despite the intense research efforts, the
gap in performance with respect to offline multi-task learning makes continual learning an open
problem. Most of the techniques have focused on a sequence of tasks in which both the identity of
the task (task label) and boundaries between tasks are provided [110, 111, 112, 113]. Thus, many
of these methods fail to capture real-world continual learning, with unknown task labels [114] [115].
A typical example that illustrates the difference between using or not the task labels is the Split
MNIST experiment, in which the ten digits of the well known handwritten dataset are split into
five classification tasks of two-class each. The model has five different final classification layers,
one for each task. Those classifiers (i.e. output heads) are indexed by the task identity (1 to 5)
that is given at testing time. This scenario is shown to be easier than class-incremental learning

𝐟
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Old classes
(negative)

New class 
(positive)

(a) (b)

Future classes
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Old classes
(negative)
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Figure 5. Class-incremental classifiers. (a): Expanding classifier. (b): Pre-allocated classifier. The latter can
exploit unseen future classes as negative examples.

(CIL) since the selection of the output head is given by the task identity [114]. CIL is typically
addressed with single-headed variants that do not require task identity, where the model always
performs prediction over all classes (i.e. all digits 0 to 9) [116, 3, 117, 114, 115, 118].

In CIL the single head final layer of a Neural Network is expanded with an output node when a
new class arrives (multiple new classes are expanded with multiple nodes); thus, in general, during
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learning, an output node sees, according to the samples in the current random batch, positive
and negative samples in the newly arrived class and in the old seen classes (i.e. the remaining),
respectively (Fig. 5(a)).

In this paper, we address CIL using a novel classifier in which a number of pre-allocated output
nodes are subject to the classification loss right from the beginning. This allows the output nodes of
yet unseen classes to firstly see negative samples since the beginning of learning together with the
positive samples that incrementally arrive (Fig. 5(b)). Contrarily to the expanding classifier, in our
formulation, the output nodes can learn from the beginning of the learning phase. This is achieved
by pre-allocating a special classifier with a large number of output nodes in which the weights are
fixed (i.e. not undergoing learning) and set to values taken from the coordinate vertices of regular
polytopes [119]. The classification layer so defined has two intriguing properties. The first is that
the features do not change their geometric configuration as novel classes are incorporated in the
learning model. The second is that a very large number of classes can be pre-allocated with no
loss of accuracy. This allows the method to meet the underlying assumption of lifelong learning as
for the case of the expanding classifier.
Further technical contents and evaluations are available in [77] .

3.5.3. Relevant publications

• Federico Pernici, Matteo Bruni, Claudio Baecchi, and Alberto Del Bimbo. Regular Polytope
Networks, IEEE Transactions on Neural Networks and Learning Systems (2021) [78] https:
//zenodo.org/record/5045051

• Niccolò Biondi Federico Pernici, Matteo Bruni, and Alberto Del Bimbo. CoReS: learning
Compatible Representations via Stationarity (Under Review).

3.5.4. Relevant software and/or external resources

• The Python implementation of our work ”class-incremental learning with pre-allocated fixed
classifiers: polytope networks” can be found in:

https://github.com/DigiTurk84/class-incremental-polytope

3.5.5. Relevant WP8 Use Cases

Our tools, described in Sec. 3.5.1 and Sec. 3.5.2, contribute to use case 2 (2A and 2B) by providing
the possibility to an AI search system to avoid extracting new features for all the previously seen
images (i.e., the gallery-set) when updating the representation model.
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4. Transfer learning (Task 3.3)

Transfer Learning is an emerging field among Deep Learning practitioners, that seeks to reuse and
exploit previously generated models for different purposes. Considering the huge amount of data,
human effort and computational power needed to train these models, being able to reuse them is
of paramount importance.

Beyond practical reasons, Transfer Learning poses a scientific challenge of relevance, as it forces
researchers to question the internal knowledge representation of deep models. Indeed, to under-
stand how to reuse deep representations, one must first understand how are these representations
learned, and how are they internally structured. Advances in this field has potential relevance for
key aspects of Deep Learning, such as explainability and interpretability, efficiency and foot-print
reduction, and real world deployment of AI powered systems.

4.1. Overview of our transfer learning contributions (Task 3.3)

Within this task partners are contributing in fundamental aspects of Transfer Learning, coordi-
nately so that their advances can contribute to one another, and with the use cases of the project
in mind. To further detail this collaboration, let us first summarize the contribution of partners.

In Subsection 4.2, UNITN studies how to train models on a set of data (the source) so that
the internal representations generated can be more appropriate to solving not one, but a variety
of additional tasks (the targets). This setting, named Multi-target Domain Adaptation can signif-
icantly increase the reusability of trained models, extending their transferability to more than one
purpose. The complementary approach, looking for the combination of several source domains to
solve a given task, is addressed by UNITN in 4.3.

In Subsection 4.4, CNR proposes Generalized Funnelling (GFun), a novel Heterogeneous trans-
fer learning (HTL) method, and applies it to the problem of cross-lingual text classification. GFun
generalizes Funnelling (Fun), a previously proposed HTL method based on hierarchical ensem-
ble learning, whereby 1st-tier language-dependent classifiers return vectors of calibrated posterior
probabilities, and where these vectors, being aligned across languages, are input to a language-
agnostic metaclassifier that returns the final classification decision. In GFun, the 1st-tier classifiers
are just special cases of view-generating functions (VGFs), that provide different views (e.g., in
the form of different types of document embeddings that capture different types of correlation in
the data) of the same document as input to the metaclassifier.

Finally, BSC contribution to this task is also directly related with the previously mentioned
works. Although it is not reported in this deliverable due to its non-mature status, BSC’s work
will try to assess to which degree is it beneficial to use pre-trained representations as they are
(also known as feature extraction approach within the Transfer Learning field), compared to their
performance when adapting thoroughly for a task through deep net optimization procedures (also
known as fine tuning within Transfer Learning). That is, a sort of Transfer Learning benchmark
to find how much effort is worth putting into improving representations instead of simply reusing
them. Since this approach allows us to compare the quality of deep net representations, the works
of UNITN (Subsections 4.2 and 4.3) will qualify for assessment under BSC’s Transfer Learning
benchmark.

4.2. Multi-target domain adaptation (Task 3.3)

Contributing partners: UNITN
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Deep learning models do not generalize well when deployed in the real-world. The gap in
performance arises due to the difference in the distributions of the training (a.k.a source) and
the test (a.k.a target) data, which is popularly referred to as domain-shift [120]. Since, collecting
labeled data for every new operating environment is prohibitive, a rich line of research, called
Unsupervised Domain Adaptation (UDA), has evolved to tackle the task of leveraging the source
data to learn a robust predictor on a desired target domain.

In the literature, UDA methods have predominantly been designed to adapt from a single
source domain to a Single Target Domain (STDA), e.g., [121, 122, 123, 124, 125, 126, 127, 128,
129, 130, 131, 132, 133, 134], to name a few. However, given the proliferation in unlabeled data
acquisition, the need to adapt to just a single target domain has lost traction in the real-world
scenarios. As the number of target domains grows, the number of models that need to be trained
also scales linearly. For this reason, the research focus has very recently been steered to address a
more practical scenario of adapting simultaneously to multiple target domains from a single source
domain. This adaptation setting is formally termed as Multi-target Domain Adaptation (MTDA).
The goal of the MTDA is to learn more compact representations with a single predictor that can
perform well in all the target domains.

4.2.1. Curriculum graph co-teaching for multi-target domain adaptation

We build a framework for the MTDA pivoted around two key concepts: feature aggregation and
curriculum learning. Firstly, as learning robust features in a unified space is a prerequisite for
attaining minimum risk across multiple target domains, we propose to represent the source and
the target samples as a graph and then leverage Graph Convolutional Networks (GCN) [135] to
aggregate semantic information from similar samples in a neighbourhood across different domains.
For the GCN to be operative, partial relationships among the samples (nodes) in the graph must
at least be known a priori in the form of class labels. However, this information is absent for the
target samples. To this end, we design a co-teaching framework where we train two classifiers: a
MLP classifier and a GCN classifier that provide target pseudo-labels to each other. The MLP
classifier is utilized to make the GCN learn the pairwise similarity between two nodes in the
graphwhile the GCN classifier, due to its feature aggregation property, provides better pseudo-labels
to assist the training of the MLP classifier. Given that co-teaching works on the assumption that
different networks capture different aspects of learning [136], it is beneficial for suppressing noisy
pseudo-labels. Secondly, during training as the network tries to adapt to multiple domain-shifts of
varying degree, pseudo-labels obtained on-the-fly from the network for the target samples are very
noisy. Self-training the network with unreliable pseudo-labeled target data further deteriorates
the performance. To handle this, we propose to obtain pseudo-labels in an episodic fashion, and
advocate the use of curriculum learning in the context of MTDA. In particular, when the domain
labels of the target are latent, each episode or curriculum step consists of a fixed number of training
iterations. Fairly consistent and reliable pseudo-labels are obtained from the GCN classifier at the
end of each curriculum step. We call this proposed framework as Curriculum Graph Co-Teaching
(CGCT) (see Fig. 6(a)).

Furthermore, when the domain labels of the target are available, we propose an Easy-To-
Hard Domain Selection (EHDS) strategy where the feature alignment process begins with the
target domain that is closest to the source and then gradually progresses towards the hardest one.
This makes adaptation to multiple targets smoother. In this case, each curriculum step involves
adaptation with a single new target domain. The CGCT when combined with this proposed
Domain-aware Curriculum Learning (DCL) (see Fig. 6(b)) is referred to as D-CGCT.
Experimental analysis and results. We conduct experiments on five standard UDA bench-
marks: Digits-five [137], Office-31 [138], PACS [139], Office-Home [140] and the very large scale
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Figure 6. The pipeline of the proposed framework: a) CGCT: Curriculum Graph Co-Teaching and b) DCL:
Domain-aware curriculum learning. (a) In the CGCT, the MLP Classifier provides pseudo-labels (PL) for the
target samples to guide the Edge Network to learn the Affinity Matrix, whereas the Node Classifier of the GCN
provides PL to the MLP Classifier at the end of each curriculum step, realizing the co-teaching. (b) In the DCL,
the target domains are selected for adaptation, one at a time per domain curriculum step tqdcl, with the “easier”
domains selected first and then the “harder” ones. After PL are obtained, the pseudo-labeled target dataset is
added to the Pseudo Source dataset, which is then used in the next adaptation step.

DomainNet [141] (0.6 million images). In this document, we only report our results on Domain-
Net dataset (Table 6) and compare them with the state-of-the-art methods. The results on other
datasets, implementation details and an extensive ablation study can be found in our paper given
in Section 4.2.2. We use the classification accuracy to evaluate the performance. The classification
accuracy is computed for every possible combination of one source domain and the rest of the
target domains. The performance for a given direction, i.e., source→rest, is given by averaging
the accuracy on all the target domains, where source signifies the source domain and rest indi-
cates all the unlabeled domains except the source. Importantly, in all our experiments we always
report the final classification accuracy obtained with the MLP because the GCN always requires
a mini-batch at inference, an assumption which is easily violated when deployed in the real world.

Table 6. Comparison with the state-of-the-art methods on DomainNet. All methods use the ResNet-101 as the
backbone. The classification accuracies are reported for each source→rest direction, with each source domain
being indicated in the columns. All the reported numbers are evaluated on the multi-target setting.

DomainNet

Model Cli. Inf. Pai. Qui. Rea. Ske. Avg(%)

Source train 25.6 16.8 25.8 9.2 20.6 22.3 20.1

SE [142] 21.3 8.5 14.5 13.8 16.0 19.7 15.6

MCD [143] 25.1 19.1 27.0 10.4 20.2 22.5 20.7

DADA [144] 26.1 20.0 26.5 12.9 20.7 22.8 21.5

CDAN [131] 31.6 27.1 31.8 12.5 33.2 35.8 28.7

MCC [145] 33.6 30.0 32.4 13.5 28.0 35.3 28.8

CDAN + DCL 35.1 31.4 37.0 20.5 35.4 41.0 33.4

CGCT 36.1 33.3 35.0 10.0 39.6 39.7 32.3

D-CGCT 37.0 32.2 37.3 19.3 39.8 40.8 34.4

As can be seen in the Table 6, the D-CGCT advances the state-of-the-art results for the
very challenging DomainNet dataset by a non-trivial margin of 5.6%. This further verifies the
effectiveness of our proposed methods for addressing the MTDA.

Initial Outcomes of New Learning Paradigms Research 34 of 64



4.2.2. Relevant publication

• S. Roy, E. Krivosheev, Z. Zhong, N. Sebe, and E. Ricci, Curriculum Graph Co-Teaching
for Multi-Target Domain Adaptation, CVPR 2021 [146]. https://zenodo.org/record/

5014029

4.2.3. Relevant software and/or external resources

• The Pytorch implementation of our work ”curriculum graph co-teaching for multi-target do-
main adaptation” can be found in https://github.com/Evgeneus/Graph-Domain-Adaptaion.

4.2.4. Relevant WP8 Use Cases

Our multi-target domain adaptation tool contribute to use cases (a) 2-2B by providing solutions to
analyze/adapt the visual content, and (b) 2-2A and 2-2B by providing the discovery of new visual
content and adapt accordingly. These can help to improve tagging and search capabilities.

4.3. Multi-source domain generalization (Task 3.3)

Contributing partners: UNITN

Domain Generalization (DG) is a promising solution that aims to learn generalizable models
with one or several labeled source domains. DG does not require the access to target domains.
Generally, DG can be divided into two categories, single-source DG [147, 148, 149] and multi-source
DG [150, 151], according to the number of source domains. Recent works mainly focus on single-
source DG where only one labeled source domain is available. However, a single domain provides
limited training samples and scene information, restricting the improvement of single-source DG
methods. In contrast, multi-source DG utilizes multiple datasets of different distributions, pro-
viding more training data that contain numerous variations and environmental factors. However,
due to the strong compatibility of deep networks, directly aggregating all source domains together
might lead the model to overfit on the domain bias, hampering the generalization ability of the
model. Although we can sample balanced training data from all source domains during training
to reduce the impact of domain bias, the above issue still remains.

4.3.1. Learning to generalize unseen domains

We address the multi-source DG by aiming to enforce the model to learn discriminative features
without domain bias so that the model can be generalized to unseen domains. To achieve this goal,
we introduce a meta-learning strategy for multi-source DG, which simulates the train-test process
of DG during model optimization. We dynamically divide the source domains into meta-train and
meta-test sets at each iteration. The meta-train is regarded as source data, and the meta-test
is regarded as “unseen” data. During training, we encourage the loss of meta-train samples to
optimize the model towards a direction that can simultaneously improve the accuracy of meta-
test samples. To overcome the unstable meta-optimization caused by the parametric classifier,
we propose a memory-based identification loss that is non-parametric and harmonizes with meta-
learning. We also present a meta batch normalization layer (MetaBN) to diversify meta-test
features, further establishing the advantage of meta-learning. The proposed framework is tested
on person re-identification (ReID) problem. The illustration of the proposed method is given in
Fig. 7 and the method is described in detail as follows.
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Figure 7. During training, we are given several (three in this example) source domains. At each iteration, source
domains are divided into one meta-test and two meta-train domains. In the meta-train stage, memory-based
identification loss and triplet loss are calculated from meta-train data as the meta-train loss. In the meta-test
stage, the original model is copied and then the copied model is updated with meta-train loss. We compute the
meta-test loss on the updated model. In this stage, MetaBN is used to diversify the meta-test features. Finally,
the combination of meta-train and meta-test losses is used to optimize the original model.

For multi-source DG in person ReID, we are provided with NS source domains DS =
{D1

S , ...,D
NS

S } in the training stage. The label spaces of the source domains are disjointed. The
goal is to train a generalizable model with the source data. In the testing stage, the model is
evaluated directly on a given unseen domain DT .

At each training iteration, we randomly divide NS source domains into NS − 1 domains as
meta-train and the rest one domain as meta-test. The process of computing the meta-learning
loss includes the meta-train and the meta-test stages. In the meta-train stage, we calculate the
meta-train loss Lmtr on the meta-train samples to optimize the model. In the meta-test stage, the
optimized model is used to calculate the meta-test loss Lmte with the meta-test samples. Finally,
the network is optimized by the combination of meta-train and meta-test losses:

argmin
Θ

Lmtr(Θ) + Lmte(Θ
′
), (20)

where Θ denotes the parameters of the network, and Θ
′

denotes the parameters of the model
optimized by the Lmtr.

In multi-source DG of ReID, we typically have two kinds of parametric classifier selections, one
global fully-connected layer (FC) classifier or NS parallel FC classifiers for each domain, both of
which will lead to problems during meta-learning. Herein, we propose a memory-based identifi-
cation loss for multi-source DG, which is non-parametric and suitable for both meta-learning and
person ReID. We maintain an individual memory for each source domain. For a source domain
DiS with ni identities, the memory Mi has ni slots, where each slot saves the feature centroid of
the corresponding identity. In initialization, we use the model to extract features for all samples
of DiS . Then, we initialize the centroid of each identity with a feature, which is averaged on the
features of the corresponding identity. At each training iteration, we update the memory with the
features in the current mini-batch. A centroid in the memory is updated through:

M[k]← m · M[k] + (1−m) · 1

|Bk|
∑
xi∈Bk

f(xi), (21)

where Bk denotes the samples belonging to the kth identity and |Bk| denotes the number of samples
for the kth identity in current mini-batch. m ∈ [0, 1] controls the updating rate.
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Given an embedding feature f(xi) from the forward propagation, we calculate the similarities
between f(xi) and each centroid in the memory. The memory-based identification loss aims to
classify f(xi) into its own identity, which is calculated by:

LM = − log
exp

(
M[i]T f(xi)/τ

)∑ni

k=1 exp (M[k]T f(xi)/τ)
, (22)

where τ is the temperature factor that controls the scale of distribution. We also use triplet
loss [152] to train the model, which is formulated as,

LTri = [dp − dn + δ]+, (23)

where dp is the Euclidean distance between an anchor feature and a hard positive feature, and dn
is the Euclidean distance between an anchor feature and a hard negative feature. δ is the margin
of triplet loss and [·]+ refers to max(·, 0).

In our meta-learning strategy, the meta-test loss is important for learning generalizable repre-
sentations, since the meta-test plays the role of the “unseen” domain. Intuitively, if the meta-test
examples are sampled from more diverse distributions, the model will be optimized to be more
robust to variations and thus be more generalizable to unseen domains. To achieve this goal, we
introduce MetaBN to generate more diverse meta-test features at the feature-level. We replace the
last Batch Normalization Layer (BN) [153] in the network with MetaBN. During training, MetaBN
utilizes the domain information from meta-train domains to inject domain-specific information into
meta-test features. This process can diversify meta-test features, enabling the model to simulate
more feature variations.

In the meta-train stage, for the ith meta-train domain, MetaBN normalizes the meta-train
features as the traditional BN, and saves the mini-batch mean µi and mini-batch variance σi, which
are used in the following meta-test stage. In the meta-test stage, MetaBN uses the saved mean
and variance to form NS − 1 Gaussian Distributions. We sample features from these distributions
and inject these domain-specific features into meta-test features such that for the ith distribution,
we sample one feature zij for each meta-test feature:

zij ∼ N (µi, σi) , (24)

where N denotes a Gaussian Distribution. By doing so, we obtain B (the batch size of meta-test
features) sampled features, which are mixed with the original meta-test features for generating
new features F iT ,

F iT = λFT + (1− λ)Zi, (25)

where FT denotes the original meta-test features. Zi = [zi0, z
i
1, · · · , ziB ] denotes B sampled features

from the ith Gaussian Distribution. λ is the mixing coefficient, which is sampled from Beta Dis-
tribution, i.e.,, λ ∼ Beta(1, 1). Finally, the mixed features are normalized by batch normalization,

f iT = γ
F iT − µiT√
σiT

2
+ ε

+ β, (26)

where µiT and σiT denote mini-batch mean and variance of F iT . γ and β denote the learnable
parameters that scale and shift the normalized value.

During training, NS source domains are separated into NS − 1 meta-train domains and one
meta-test domain at each iteration. The model is optimized by the losses calculated in the meta-
train and meta-test stages. For each meta-train domain, the meta-train loss is a combination of
memory-based identification (Eq. 22) and triplet losses (Eq. 23), i.e.,

Limtr = LTri(Xi
S ; Θ) + LM (Xi

S ,Mi
S ; Θ), (27)
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where Θ denotes the parameters of the network. Xi
S and Mi

S denote the training samples and
memory of the ith meta-train domain, respectively. The total loss for meta-train is averaged over
NS − 1 meta-train domains, formulated as,

Lmtr =
1

NS − 1

NS−1∑
i=0

Limtr. (28)

In the meta-test stage, the meta-test domain is performed on the new parameters Θ
′
, which

is obtained by optimizing Θ with Lmtr. With the MetaBN, we can obtain NS − 1 mixed features
for each meta-test sample. The average memory-based identification loss over these features is
considered as the meta-test memory-based identification loss. The meta-test loss is:

Lmte = LTri(XT ; Θ
′
) +

1

NS − 1

NS−1∑
k=0

LM (fkT ,MT ; Θ
′
), (29)

where XT denotes the meta-test samples and fkT denotes the kth mixed features generated by the
MetaBN. Finally, the model is optimized by the objective in Eq. 20.

Experimental Analysis and Results. We conduct experiments on four large-scale person re-
identification benchmarks: Market-1501 [154], DukeMTMC-reID [155, 156], CUHK03 [157, 158]
and MSMT17 [159]. We divide these four datasets into two parts: three domains as source domains
for training and the other one as target domain for testing. The cumulative matching characteristic
(CMC) at Rank-1 and mean average precision (mAP) are used to evaluate performance on the
target testing set.

As seen in Table 7, when using Combined MSMT17 as the source data, OSNet-AIN [149] and
QAConv [148] achieve the best results on both Market-1501 and DukeMTMC-reID. Compared
to single-source DG methods that use more training data (Combined MSMT17), our method
outperforms them by a large margin on Market-1501 and achieves comparable results with them
on DukeMTMC-reID. Specifically, when testing on Market-1501, with the same backbone, our
method surpasses SNR [147] by 6.7% in mAP and 4.4% in Rank-1 accuracy. When training with
multiple source domains, with the same backbone, our method produces significantly higher results
than QAConv50. Specifically, proposed method is higher than QAConv50 by 12.5% in mAP for
Market-1501 and by 3.4% in mAP for DukeMTMC-reID. This demonstrates the superiority of our
method over the method that considers all the source domains as one domain. When using the IBN-
Net50 as the backbone, our method can achieve better mAP than using ResNet-50. There is only
one method (QAConv [148]) evaluated on CUHK03 and MSMT17. When testing on MSMT17,
QAConv [148] uses DukeMTMC-reID as the source data. Clearly, our method achieves higher
results than QAConv [148] on both datasets, no matter how many source domains QAConv is
trained with. We also find that both our method and QAConv produce poor results on CUHK03
and MSMT17, indicating there is still a large room for generalizable models in DG.

4.3.2. Relevant publications

• Y. Zhao, Z. Zhong, F. Yang, Z. Luo, Y. Lin, S. Li, and N. Sebe, Learning to Generalize Unseen
Domains via Memory-based Multi-Source Meta-Learning for Person Re-Identification, CVPR
2021 [161]. https://zenodo.org/record/5014450

4.3.3. Relevant software and/or external resources

• The Python implementations of our work ”learning to generalize unseen domains via memory-
based multi-source meta-learning for person re-identification” can be found in https://
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Table 7. Comparison with State-of-the-Arts domain generalization methods on four large-scale person ReID
benchmarks — Market-1501 (M), DukeMTMC-reID (D), CUHK03 (C) and MSMT17 (MS). The performance is
evaluated quantitatively by mean average precision (mAP) and cumulative matching characteristic (CMC) at
Rank-1 (R1).

Method Source IDs Images
Market-1501

Source IDs Images
DukeMTMC

mAP R1 mAP R1

OSNet-IBN [160]

Com-MS 4,101 126,441

37.2 66.5

Com-MS 4,101 126,441

45.6 67.4
OSNet-AIN [149] 43.3 70.1 52.7 71.1
SNR [147] 41.4 70.1 50.0 69.2
QAConv50 [148] 43.1 72.6 52.6 69.4

QAConv50 [148]
MS+D+C 3,110 75,406

35.6 65.7
MS+M+C 3,159 71,820

47.1 66.1
Ours (ResNet-50) 48.1 74.5 50.5 69.4
Ours (IBN-
Net50)

50.2 75.9 51.1 69.2

QAConv50 [148] MS+D
+C-NP

2,510 56,508
39.5 68.6 MS+M

+C-NP
2,559 52,922

43.4 64.9
Ours (ResNet-50) 51.1 76.5 48.2 67.1
Ours (IBN-
Net50)

52.5 78.3 48.8 67.2

Method Source IDs Images
CUHK-NP

Source IDs Images
MSMT17

mAP R1 mAP R1

QAConv50 [148] Com-MS 4,101 126,441 22.6 25.3 D 702 16,522 8.9 29.0

QAConv50 [148]
MS+D+M 2,494 62,079

21.0 23.5
D+M+C 2,820 55,748

7.5 24.3
Ours (ResNet-50) 29.9 30.7 12.9 33.0
Ours (IBN-
Net50)

32.1 33.1 14.7 36.9

QAConv50 [148]
MS+D+M 2,494 62,079

19.2 22.9 D+M
+C-NP

2,220 36,823
10.0 29.9

Ours (ResNet-50) 30.9 31.9 13.1 32.0
Ours (IBN-
Net50)

31.4 31.6 15.4 37.1

github.com/HeliosZhao/M3L.

4.3.4. Relevant WP8 Use Cases

Our multi-source domain generalization tool contribute to use cases (a) 2-2B by providing solutions
to analyze the visual content thanks to being able to generalize under domain-gap.

4.4. Heterogeneous Document Embeddings for Cross-Lingual Text Clas-
sification (Task 3.3)

Contributing partners: CNR

In transfer learning (TL), given a training set TrLS of labelled data items from a “source” domain
S, we must issue predictions for unlabelled data items from a “target” domain T , related to S but
different from it. Heterogeneous TL (HTL) denotes the set of TL tasks in which the feature spaces
FS and FT of the two domains are different (and, in general, non-overlapping). An example HTL
task is cross-lingual text classification (CLC), the task of classifying documents, each written in one
of a finite set L = {λ1, ..., λ|L|} of languages, according to a common “codeframe” (or: classification
scheme) Y = {y1, ..., y|Y|}. CLC can be tackled as a TL task, with the goal of improving on the
näıve “monolingual baseline” (consisting of |L| independently generated monolingual classifiers)
by exploiting synergies among training sets from different languages. Here, each language-specific
domain of documents is at the same time a source domain and a target domain, according to an
“all languages help each other” metaphor.

Initial Outcomes of New Learning Paradigms Research 39 of 64

https://github.com/HeliosZhao/M3L
https://github.com/HeliosZhao/M3L
https://github.com/HeliosZhao/M3L


Esuli et al. [162] proposed Funnelling (Fun), a two-tier ensemble method for HTL, and tested
it on a CLC setting. In Fun, a set of |L| 1st-tier, language-specific classifiers return, for each
unlabelled document d, a vector of |Y| calibrated posterior probabilities; each such vector is fed to
a 2nd-tier “metaclassifier” which returns the final classification decisions. Vectors of |Y| calibrated
posterior probabilities thus form an “interlingua” among the |L| languages, since all such vectors
are in the same vector space, irrespectively of the language of the documents they correspond to.

One of the reasons Fun outperforms the näıve monolingual baseline is that the metaclassifier
leverages class-class correlations, i.e., stochastic dependencies among the different classes in Y. In
this work we propose Generalized Funnelling (gFun), an extension of Fun capable of leveraging
additional types of correlations (e.g., word-class correlations, word-word correlations). This is
obtained by aggregating the vector of calibrated posterior probabilities and document embeddings
that encode these additional types of correlations. We here present CLC experiments in which we
extend the vectors of calibrated posterior probabilities by using Word-Class Embeddings (WCEs)
[163] and Multilingual Unsupervised or Supervised Embeddings (MUSEs) [164], which encode word-
class correlations and word-word correlations for multiple languages, respectively.

4.4.1. Generalized Funnelling

Funnelling, as described in [162], comes in two variants, called Fun(kfcv) and Fun(tat); we
here disregard Fun(kfcv) and only use Fun(tat), since in all the experiments reported in [162],
Fun(tat) clearly outperformed Fun(kfcv). Both Fun and gFun can tackle single-label and
multi-label text classification alike; for reasons of space, we here deal only with the latter.

In Fun(tat), in order to train a classifier ensemble, we first train language-specific, 1st-tier
classifiers h1

1, ..., h
1
|L| (with superscript s indicating the s-th tier) from the language-specific training

sets Tr1, ...,Tr|L|. Training documents d ∈ Tri may be represented by means of any desired vectorial
representation φ1(d), such as, e.g., tfidf -weighted bag-of-words, and classifiers may be trained by
any learner, provided the resulting classifier returns, for each document d to classify and for each
class yj , a confidence score h1

i (d, yj) ∈ R, where λi is the language document d is written in.
We then apply each 1st-tier classifier h1

i to all training documents d ∈ Tri, thus obtaining a
vector

S(d) = (h1
i (d, y1), ..., h1

i (d, y|Y|)) (30)

of confidence scores for each d ∈ Tri.
The next step consists of computing (via a chosen probability calibration method) language-

and class-specific calibration functions fij that map confidence scores h1
i (d, yj) into calibrated

posterior probabilities. We can then apply fij to each document d ∈ Tri and obtain a vector of
calibrated posterior probabilities

φ2(d) = (fi1(h1
i (d, y1)), ..., fi|Y|(h

1
i (d, y|Y|)))

= (Pr(y1|d), ...,Pr(y|Y||d))
(31)

At this point, we train a language-independent, 2nd-tier “meta”-classifier h2 from all training

documents d ∈
⋃|L|
i=1 Tri, where document d is represented by its φ2(d) vector. This concludes the

training phase.
In order to apply the trained ensemble to a test document d ∈ Tei we apply classifier h1

i

to d and convert the resulting vector S(d) of confidence scores into a vector φ2(d) of calibrated
posterior probabilities. We then feed this latter into the metaclassifier h2, which returns a vector of
confidence scores (h2(d, y1), ..., h2(d, y|Y|)) from which the final decisions are obtained in the usual
way.
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As explained in [162], the reasons of the good performance of Fun are essentially two. The
first is that Fun learns from heterogeneous data; i.e., while in the näıve monolingual baseline each
classifier is trained on just |Tri| labelled examples, in Fun we have a metaclassifier trained on⋃|L|
i=1 |Tri| labelled examples, which means that all training examples contribute to classifying all

unlabelled examples, irrespectively of the languages of the former and of the latter. The second
is that the metaclassifier leverages class-class correlations, i.e., it learns to exploit the stochastic
dependencies between classes typical of multilabel settings.

The goal of gFun is that of allowing additional types of stochastic dependencies (e.g., word-
class correlations, word-word correlations) to contribute to the classification process.

The key step in allowing Fun’s metaclassifier to leverage the different language-specific train-
ing sets consists of representing their documents in a space that is common to all languages. In
Fun, this is made possible by the fact that the 1st-tier classifiers all return vectors of calibrated
posterior probabilities. In gFun this process is generalized by introducing a set Ψ of view gener-
ators, i.e., language-dependent functions mapping documents into language-independent vectorial
representations aligned across languages, i.e., such that both the dimensionality of the vectors and
the meaning of each vector dimension are the same for all languages.
The view generators ψk ∈ Ψ might require parameter optimization during the training phase; this
is undertaken independently for each language and view generator. gFun also implements an
aggregation function (aggfunc) that brings together the different representations produced by the
view generators, and shapes the document representation for use in the metaclassifier. In this case,
as aggfunc we simply adopt concatenation.

Note that the original formulation of Fun thus reduces to an instantiation of gFun in which
there is a single view generator (a calibrated classifier) and the aggregation function is the identity
function. In this case, fitting this single view generator comes down to training the 1st-tier classifier
h1
i and choosing the calibration functions fik. During the test phase, invoking the view generator

amounts to computing the φ2(d) representations (Eq. 31) of the test documents.
The Fun metaclassifier has access to vectors of |Y| posterior probabilities, and can thus leverage

class-class correlations. In what follows we instead describe new view generators that we have
investigated in order to introduce additional information into gFun. In particular, we describe
view generators that mine word-class correlations and word-word correlations. We also discuss a
few additional modifications concerning data normalization that we have introduced into gFun and
that, although subtle, bring about a substantial improvement in the effectiveness of the method.

For encoding word-class correlations we derive document embeddings from Word-Class Em-
beddings (WCEs) [163]. WCEs are supervised embeddings meant to extend (e.g., by concatenation)
other unsupervised pre-trained word embeddings (e.g., those produced by word2vec or GloVe) in
order to inject task-specific word meaning in multiclass text classification. The WCE for word w
is defined as

E(w) = ϕ(η(w, y1), ..., η(w, y|Y|)) (32)

where η is a real-valued function that quantifies the correlation between word w and class yj as
observed in the training set, and where ϕ is any dimensionality reduction function. Here, as the
η function we adopt the normalized dot product, as proposed in [163], whose computation is very
efficient; as ϕ we use the identity function, and our WCEs are thus |Y|-dimensional vectors.

So far, WCEs have been tested exclusively in monolingual settings. However, WCEs are natu-
rally aligned across languages, since WCEs have one dimension for each y ∈ Y, which is the same
for all λi ∈ L. Document embeddings relying on WCEs thus display similar characteristics irre-
spective of the language in which the document is written in. This is, to the best of our knowledge,
the first application of WCEs to a multilingual setting.
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The view generator for WCEs consists of first computing, for each language λi ∈ L, the
language-specific WCE matrix Wi, and then projecting the tfidf matrix Xi of Tri (during training)
or Tei (during test) as Xi ·Wi.

For encoding word-word correlations we derive document embeddings from Multilingual
Unsupervised or Supervised Embeddings (MUSEs) [164]. MUSEs are generated via a method for
aligning in a common vector space unsupervised (monolingual) word embeddings. The alignment is
obtained via a linear mapping (i.e., a rotation matrix) W learned by an adversarial training process
in which a generator (in charge of mapping the source embeddings onto the target space) is trained
to fool a discriminator from distinguishing the language of provenance of the embeddings, that
is, from discerning if the embeddings it receives as input originate from the target language or
are instead the product of a transformation of embeddings originated from the source language.
Mapping W is then further refined using Procrustes alignment. The name “Unsupervised or
Supervised” refers to the fact that the method can operate with or without a dictionary of parallel
seed words.

We used the MUSEs that the authors of [164] make publicly available1, and that consist of 300-
dimensional multilingual word embeddings trained on Wikipedia using fastText. The embeddings
have been aligned for 30 languages with the aid of a bilingual dictionary.

The view generator for MUSEs is similar to that for WCEs, with the sole exception that fitting
the generator comes down to just allocating in memory the pre-trained MUSE matrices Mi for each
language λi involved; the projection of training and test documents is as before, and is computed
as Xi ·Mi.

We have found that applying some routine normalization techniques consistently increases
the performance of gFun. This normalization consists of imposing unit L2-norm to the vectors
computed by the view generators, removing (following [165]) the first principal component of the
document embeddings obtained via WCEs or MUSEs, and standardizing the columns of the shared
space before passing the vectors to the metaclassifier.2

The intuition behind normalization, when dealing with heterogeneous representations, is
straightforward, and is that of allowing all sources of information to equally contribute to the
classification process. What instead might come as a surprise is the fact that normalization helps
improve gFun even when relying exclusively on the class-class correlations (i.e., as Fun does [162]),
and that this improvement is statistically significant. We quantify this variation in performance in
the following experiments.

4.4.2. Experiments

We here summarize the results of the experiments that we have carried out (see [166] for details).
For different variants of gFun we indicate in parentheses the document representations that the
variant uses, with the vectors of calibrated posterior probabilities denoted by X, and with doc-
ument embeddings obtained via MUSEs and WCEs denoted by M and W, resp. gFun(X), the
variant that uses the same document representation as Fun, outperforms Fun, which indicates
that the normalization steps are beneficial. The results of gFun(XM) and gFun(XW) show that
the M and W representations contribute differently, depending on the nature of the dataset: on
RCV1/RCV2, adding M delivers better results than adding W, while W is more useful than M on
JRC-Acquis. This can be ascribed to the higher number of classes that JRC-Acquis (300) has with
respect to RCV1/RCV2 (73): the 300 classes of JRC-Acquis enable WCEs (that encode word-class

1https://github.com/facebookresearch/MUSE
2Standardizing (a.k.a. “z-scoring”, or “z-transforming”) consists of having a random variable x, with mean µ

and standard deviation σ, translated and scaled as z = x−µ
σ

, so that the new random variable z has zero mean and
unit variance. The statistics µ and σ are unknown, and are thus estimated on the training set.
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correlations) to bring in a higher amount of information, thus making WCEs more discriminative
for JRC-Acquis than for RCV1/RCV2. Using all three representations, as in gFun(XMW), yields
the best result in 3 out of 4 (measure, dataset) combinations, and in the 4th combination yields a
result not different, in a statistically significant sense, from the best one; this confirms the value
of the intuitions that underlie gFun.

4.4.3. Relevant publications

• Alejandro Moreo, Andrea Pedrotti, and Fabrizio Sebastiani. Heterogeneous Document Em-
beddings for Cross-Lingual Text Classification. Proceedings of the 36th ACM Symposium
On Applied Computing (SAC 2021), Gwangju, KR, pp. 685–688. (Best short paper award)
[166].
Zenodo record: https://zenodo.org/record/4467989

4.4.4. Relevant software and/or external resources

• The Python implementation of the work “Heterogeneous document embeddings for cross-
lingual text classification” can be found at https://github.com/andreapdr/gFun.
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5. Learning to count (Task 3.7)

Contributing partners: CNR

“Learning to Count” is a task having to do with machine learning approaches for training estimators
of quantities. There are two classes of problems that are being addresses in this task, and that
may be usefully viewed as forming two different subtasks, i.e.,

• “Learning to quantify” (a.k.a. quantification). This subtask is concerned with training unbi-
ased estimators of class prevalence via supervised learning, i.e., learning to estimate, given a
sample of objects, the percentage of items that belong to a given class. This task originates
with the observation that “Classify and Count (CC)”, the trivial method of obtaining class
prevalence estimates, is often a biased estimator, and thus delivers suboptimal quantification
accuracy. This bias is particularly strong when the data exhibits dataset shift, i.e., when the
joint distribution of the independent and the dependent variables is not the same in the train-
ing data and in the unlabelled data for which predictions must be issued. Quantification is
important for several applications, e.g., gauging the collective satisfaction for a certain prod-
uct from textual comments, establishing the popularity of a given political candidate from
blog posts, predicting the amount of consensus for a given governmental policy from tweets,
or predicting the amount of readers who will find a product review helpful.

• “Learning to count objects”. This subtask has to do with using machine learning approaches
in order to train estimators of the number of objects (which may be inanimate objects, such
as cars, but may also be animate objects, such as people or animals) in visual media, such as
still images or video frames. Example applications of these techniques are e.g., counting the
number of cars in a video frame (in order to estimate traffic volume or car park occupancy)
or counting the number of people in a still image (say, in order to estimate the amount of
people taking part in a rally).

5.1. Overview of our learning to count contributions (Task 3.7)

We here present two main contributions.
In Section 5.2 CNR casts a critical eye on much of the experiments that have been carried out in

the literature on learning to quantify, and that have contributed to assess the relative strengths of
different methods, including the “Classify and Count” trivial baseline. In this research, the authors
argue that much of this experimentation has been inadequate, in that parameter optimisation has
often been carried out by minimizing classification-oriented loss functions and by using simplistic
classification-oriented evaluation protocols. The authors of this research argue that this parameter
optimisation should instead have been carried out by minimizing truly quantification-oriented loss
functions, and propose a much more complex quantification-oriented evaluation protocol that re-
flects the parameter optimisation needs of learning to quantify. The authors of this research go on
to reassess a number of previously proposed quantification methods by using the parameter opti-
misation standards they propose, and conclude that many well-known methods now look different,
in terms of performance, than they previously appeared.

In Section 5.3 CNR presents the activity it has carried out on investigating techniques for
counting objects in images. Specifically, a technique relying on density map estimation and unsu-
pervised domain adaptation is introduced. This activity also has relationships with T3.3 (Transfer
Learning) and T5.3 (Learning with scarce data). Its details are given in Deliverable D5.1 (“Ini-
tial report on Multimedia Summarisation and Analysis”) where the activity carried out in T5.3 is
presented as well.
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5.2. Re-Assessing Quantification Methods with Quantification-Oriented
Parameter Optimisation (Task 3.7)

Learning to quantify (a.k.a. quantification) consists of training a predictor that returns estimates
of the relative frequency (a.k.a. prevalence, or prior probability) of the classes of interest in a set of
unlabelled data items, where the predictor has been trained on a set of labelled data items [167].

The rationale of this task is that many real-life applications of classification suffer from distri-
bution shift [168], the phenomenon according to which the distribution py(U) of the labels in the
set of unlabelled test documents U is different from the distribution py(L) that the labels have in
the set of labelled training documents L. It has been shown that, in the presence of distribution
shift, the trivial strategy of using a standard classifier to classify all the unlabelled documents in U
and counting the documents that have been assigned to each class (the “Classify and Count” (CC)
method), delivers poor class prevalence estimates. The reason is that most supervised learning
methods are based on the IID assumption, which implies that the distribution of the labels is the
same in L and U . “Classify and Count” is considered a biased estimator of class prevalence, since
the goal of standard classifiers is to minimise (assuming for simplicity a binary setting) classifica-
tion error measures such as (FP + FN), while the goal of a quantifier is to minimise quantification
error measures such as |FP − FN|. (In this work we tackle binary quantification, so FP and FN
denote the numbers of false positives and false negatives, resp., from a binary contingency table.)
Following this observation, several quantification methods have been proposed, and have been
experimentally shown to outperform CC.

In this work we contend that previous works, when testing advanced quantification methods,
have used as baselines versions of CC that had not been properly optimised. This means that
published results on the relative merits of CC and other supposedly more advanced methods are
still unreliable. We thus reassess the real merits of CC by running extensive experiments (on
three publicly available sentiment classification datasets) in which we compare properly optimised
versions of CC and its three main variants (PCC, ACC, PACC) with a number of more advanced
quantification methods. In these experiments we properly optimise all quantification methods,
i.e., (a) we optimise their hyperparameters, and (b) we conduct this optimisation via a truly
quantification-oriented evaluation protocol, which also involves minimising a quantification loss
rather than a classification loss. Our results indicate that, while still inferior to some cutting-edge
quantification methods, CC and its variants deliver near-state-of-the-art quantification accuracy
once hyperparameter optimisation is performed properly.

We here assume a binary setting, with the two classes Y = {⊕,	} standing for Positive and
Negative. By x we denote a document drawn from a domain X of documents; by L ⊂ X we denote
a set of labelled documents, that we typically use as a training set, while by U we denote a sample
of unlabelled documents, that we typically use as the sample to quantify on. By py(σ) we indicate
the true prevalence of class y in sample σ, by p̂y(σ) we indicate an estimate of this prevalence, and
by p̂My (σ) we indicate the estimate of this prevalence as obtained via quantification method M . Of

course, for any method M it holds that p̂M	 (U) = (1− p̂M⊕ (U)).

Unsuitable parameter optimisation and weak baselines The reason why we here reassess
CC and its variants we have described above, is that we believe that, in previous papers where
these methods have been used as baselines, their full potential has not been realised because of
missing or unsuitable optimisation of the hyperparameters of the classifier on which the method
is based.

Specifically, both CC and its variants rely on the output of a previously trained classifier, and
this output usually depends on some hyperparameters. Not only the quality of this output heavily
depends on whether these hyperparameters have been optimised or not (on some held-out data
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or via k-fold cross-validation), but it also depends on what evaluation measure this optimisation
has used as a criterion for model selection. In other words, given that hyperparameter optimi-
sation chooses the value of the parameter that minimises error, it would make sense that, for a
classifier to be used for quantification purposes, “error” is measured via a function that evaluates
quantification error, and not classification error. Unfortunately, in most previous quantification
papers, researchers either do not specify whether hyperparameter optimisation was performed at
all [169, 170, 171, 172, 173, 174, 175, 176], or leave the hyperparameters at their default val-
ues [177, 178, 179, 180, 181], or do not specify which evaluation measure they use in hyperparam-
eter optimisation [182, 183], or use, for this optimisation, a classification-based loss [184, 185]. In
retrospect, we too plead guilty, since some of the papers quoted here are our own.

All this means that CC and their variants, when used as baselines, have been turned into weak
baselines, and this means that the merits of more modern methods relative to them have possibly
been exaggerated, and are thus yet to be assessed reliably. In this work we thus engage in a
reproducibility study, and present results from text quantification experiments in which, contrary
to the situations described in the paragraph above, we compare carefully optimised versions of CC
and its variants with a number of (carefully optimised versions of) more modern quantification
methods, in an attempt to assess the relative value of each in a robust way.

Quantification-oriented parameter optimisation In order to perform quantification-
oriented parameter optimisation we need to be aware that there may exist two types of parameters
that require estimation and/or optimisation, i.e., (a) the hyperparameters of the classifier on which
the quantification method is based, and (b) the parameters of the quantification method itself.

The way we perform hyperparameter optimisation is the following. We assume that the dataset
comes with a predefined split between a training set L and a test set U .

We first partition L into a part LTr that will be used for training purposes and a part LVa that
will be used as a held-out validation set for optimising the hyperparameters of the quantifier. We
then extract, from the validation set LVa, several random validation samples, each characterised
by a predefined prevalence of the ⊕ class; here, our goal is allowing the validation to be conducted
on a variety of scenarios characterised by widely different values of class prevalence, and, as a
consequence, by widely different amounts of distribution shift.3 In order to do this, we extract
each validation sample σ by randomly undersampling one or both classes in LVa, in order to obtain
a sample with prespecified class prevalence values. We draw samples with a desired prevalence value
and a fixed amount q of documents; in order to achieve this, in some cases only one class needs to
be undersampled while in some other cases this needs to happen for both classes. We use random
sampling without replacement if the number of available examples of ⊕ (resp. 	) is greater or
equal to the number of required ones, and with replacement otherwise. We extract samples with a
prevalence of the ⊕ class in the set {π1, ..., πn}; for each of these n values we generate m random
samples consisting of q validation documents each. Let Θ be the set of hyperparameters that we
are going to optimise. Given the established grid of value combinations θ1, ..., θn that we are going
to test for Θ, for each θi we do the following, depending on whether the quantification method has
its own parameters (Case 1 below) or not (Case 2 below):

1. If the quantification method M we are going to optimise requires some parameters λi to be
estimated, we first split LTr into a part LTr

Tr and a part LVa
Tr , training the classifier on LTr

Tr

3Note that this is similar to what we do, say, in classification, where the different hyperparameter values are tested
on many validation documents; here we test these hyperparameter values on many validation samples, since the
objects of study of text quantification are document samples inasmuch as the objects of study of text classification
are individual documents.
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using the chosen learner parameterised with θi, and estimate parameters λi on LVa
Tr .4 Among

the variants of CC, this applies to methods ACC and PACC, which require the estimation
of (the hard or soft version of) TPR and FPR. Other methods used in the experiments of
Section 5.2 and that also require some parameter to be estimated are HDy and QuaNet.

2. If the quantification method M we are going to optimise does not have any parameter that
requires estimation, then we train our classifier on LTr, using the chosen learner parameterised
with θi, and use quantification method M on all the samples extracted from LVa.

In both cases, we measure the quantification error via an evaluation measure for quantification
that combines (e.g., averages) the results across all the validation samples. As our final value
combination for hyperparameter set Θ we choose the θi for which quantification error is minimum.

Note that, in the above discussion, each time we split a labelled set into a training set and
a validation set for parameter estimation / optimisation purposes, we could instead perform a
k-fold cross-validation; the parameter estimation/optimisation would be more robust, but the
computational cost of the entire process would be k times higher. While the latter method is also,
from a methodological standpoint, an option, in this work we stick to the former method, since
the entire parameter optimisation process is, from a computational point of view, already very
expensive.

Experiments The experiments we have carried out (see [186] for details) reveal a number of
patterns. One of these is that SVM and LR (the two best-performing classifiers overall) tend to
benefit from optimised hyperparameters, and tend to do so to a greater extent when the loss used
in the optimisation is quantification-oriented. Somehow surprisingly, not all methods improve after
model selection in every case. However, there tends to be such an improvement especially for ACC
and PACC. A likely reason for this is the possible existence of a complex tradeoff between obtaining
a more accurate classifier and obtaining more reliable estimates for the TPR and FPR quantities.

Regarding the different datasets, it seems that there is no clear improvement from performing
model selection when the training set is balanced (see IMDB), neither by using a classification-
oriented measures nor by using a quantification-oriented one. A possible reason is that any classifier
(with or without hyperparameter optimisation) becomes a reasonable quantifier if it learns to pay
equal importance to positive and negative examples, i.e., if the errors it produces are unbiased
towards either ⊕ or 	. In this respect, RF and MNB prove strongly biased towards the majority
class, and only when corrected via an adjustment (ACC or PACC) they deliver results comparable
to those obtained for other learners.

Interestingly, although some advanced quantification methods (specifically: SLD and HDy)
stand as the top performers, many among the (supposedly more sophisticated) quantification
methods fail to improve over CC’s performance. At a glance, most quantification methods tend to
obtain lower ranks when compared with properly optimised CC variants. Remarkable examples of
rank variation include CC and ACC with SVM and LR: when evaluated on Kindle and HP, they
climb several positions (up to 25), often entering the group of the 10 top-performing methods. In
the most extreme case, ACCAE

LR moves from position 28 (out of 29) to position 3 once properly
optimised for quantification.

See [186] for a much expanded discussion of this work and of the experiments we have carried
out.

4Note that we do not retrain the classifier on the entire LTr. While this might seem beneficial, since LTr contains
more training data than LTr

Tr, we need to consider that the estimates ˆTPRh and ˆFPRh have been computed on LTr

and not on LTr
Tr.
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5.2.1. Relevant publications

• Alejandro Moreo and Fabrizio Sebastiani. Re-Assessing the “Classify and Count” Quantifica-
tion Method. Proceedings of the 43rd European Conference on Information Retrieval (ECIR
2021) pp. 75–91, vol. 2 [186].
Zenodo record: https://zenodo.org/record/4468277

5.2.2. Relevant software and/or external resources

• The Python implementation of the work ”Re-assessing the “classify and count” quantification
method” can be found at https://github.com/AlexMoreo/CC.

5.3. Counting objects by leveraging domain adaptation techniques (Task 3.7)

Contributing partners: CNR

We developed an end-to-end CNN-based Unsupervised Domain Adaptation (UDA) algorithm for
traffic density estimation and counting, based on adversarial learning in the output space. The
density estimation is one of those tasks requiring per-pixel annotated labels and, therefore, needs
a lot of human effort.

In many real-world applications, there is indeed a large domain shift between the distributions
of the train source and test target domains, leading to a significant drop in performance at inference
time. UDA is a class of techniques that aims to mitigate this drawback without the need for labelled
data in the target domain. This makes it particularly useful for the tasks in which acquiring new
labelled data is very expensive, such as for semantic and instance segmentation.

We conducted experiments considering different types of domain shifts, and we made pub-
licly available two new datasets for the vehicle counting task that were also used for our tests.
Experiments show a significant improvement using our UDA algorithm compared to the model’s
performance without domain adaptation.

Our method relies on a CNN model trained end-to-end with adversarial learning in the output
space (i.e., the density maps), which contains rich information such as scene layout and context.
The peculiarity of our adversarial learning scheme is that it forces the predicted density maps in
the target domain to have local similarities with the ones in the source domain.

The proposed framework consisting of two modules: 1) a CNN that predicts traffic density
maps, from which we estimate the number of vehicles in the scene, and 2) a discriminator that
identifies whether a density map (received by the density map estimator) was generated from an
image of the source domain or the target domain.

In the training phase, the density map predictor learns to map images to densities based on an-
notated data from the source domain. At the same time, it learns to predict realistic density maps
for the target domain by trying to fool the discriminator with an adversarial loss. The discrimina-
tor’s output is a pixel-wise classification of a low-resolution map, where each pixel corresponds to
a small region in the density map. Consequently, the output space is forced to be locally similar
for both the source and target domains. In the inference phase, the discriminator is discarded, and
only the density map predictor is used for the target images. We describe each module and how it
is trained in the following subsections.

This activity is also related to T3.3 (Transfer Learning), and T5.3 (Learning with scarce data).
A more detailed description of it is given in Deliverable D5.1 (“Initial report on Multimedia Sum-
marisation and Analysis”).
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This activity was developed in synergy with the AI4EU project and it has already been uploaded
in the AI on Demand Platform. In AI4Media we particularly took care of the learning with scarce
data issue, which was addressed leveraging on solutions of domain adaptation.

5.3.1. Relevant Publications

Relevant Publications:

• Ciampi, L., Santiago, C., Costeira, J.P., Gennaro, C., Amato, G., Domain adaptation for
traffic density estimation, VISIGRAPP 2021 - Proceedings of the 16th International Joint
Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications,
Volume 5, Pages 185-195, 2021 [187].
Zenodo record: https://zenodo.org/record/5078270.

5.3.2. Relevant software and/or external resources

• The code of our work “AI for visual vehicles counting” can be found at https://www.

ai4europe.eu/research/ai-catalog/ai-visual-vehicles-counting.

5.3.3. Relevant WP8 Use Cases

This tool contributes to use cases 2B1, 3C2-6, 3C2-7, 4C2, by providing solutions to analyze visual
content and to count objects contained in it.
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6. Ongoing Work and Conclusions

6.1. Ongoing work

Below, we briefly summarize the ongoing work associated to each task.

6.1.1. Lifelong and on-line learning (Task 3.1)

UNITN will focus on the problem of Memory-Constrained Online Continual Learning which
imposes strict constraints on the memory overhead that a possible algorithm can use to avoid
catastrophic forgetting. As most, if not all, previous continual learning methods violate these
constraints, we will investigate approaches that effectively balances stability and plasticity in order
to learn from data streams, while preserving the ability to solve old tasks through distillation.

CEA’s ongoing work is focused on class-incremental learning without memory of past data. This
is a very challenging scenario since the effect of catastrophic forgetting is very strong without past
data replay. Two topics are of particular interest: (1) transferring knowledge between datasets to
reduce the effect of catastrophic forgetting and (2) ensuring a better balance between stability and
plasticity by mixing fixed and evolving feature representations.

6.1.2. Transfer learning (Task 3.3)

UNITN will focus on the problem of Unsupervised domain adaptation (UDA) on videos. In-
spired by recent literature on contrastive learning we are currently consider a novel UDA approach
for action recognition from videos which uses a two-headed deep architecture which simultaneously
adopts cross-entropy and contrastive losses from different network branches to robustly learn a tar-
get classifier. Moreover, we will consider the domain transfer from synthetically generated action
videos to real-life ones.

CNR’s ongoing work includes further extensions of the gFun architecture discussed in Sec-
tion 4.4. These extensions include:

• the addition of a further VGFs that allows the use of document embeddings generated via
multilingual BERT (which encode context-dependent word-word correlations);

• the addition of a new function (based on vector averaging, and made possible by a further
layer of classifiers) for combining the outputs of different VGFs into a single representation
to be fed to the metaclassifier.

A journal paper that reports on these findings is in preparation. Planned work also includes the use
of the gFun architecture for performing cross-media (instead of cross-lingual) classification, i.e.,
classification in which training items for, say, the “text” domain, contribute to the classification of
unlabelled items for, say, the “image” domain.

CEA’s ongoing work is focused on the proposal of a stable deep model pretraining pipeline which
exploits semantically diversified datasets. Particular attention is given to the class diversification
step, which is crucial for obtaining models which are transferable toward a large number of target
tasks.

Initial Outcomes of New Learning Paradigms Research 50 of 64



6.1.3. Learning to count (Task 3.7)

CNR’s ongoing work includes the following:

• A. Esuli, A. Moreo and F. Sebastiani (all CNR) have developed (and made publicly available)
QuaPy, an open-source, Python-based framework that implements several learning methods,
evaluation measures, parameter optimisation routines, and evaluation protocols, for learning
to quantify (https://github.com/HLT-ISTI/QuaPy); a paper that presents it [188] has also
been submitted to an international conference;

• A. Moreo and F. Sebastiani (both CNR) have submitted a paper [189] on tweet sentiment
quantification to an international journal;

• A. Esuli, A. Moreo and F. Sebastiani (all CNR) are working on two variants of SLD, a
state-of-the-art quantification method; the first variant combines aspects of SLD and aspects
of binning-based probability calibration methods, while the second variant brings into SLD
intuitions from PACC, another state-of-the-art quantification method;

• A. Esuli, A. Moreo and F. Sebastiani (all CNR), with A. Fabris (University of Padova), are
working on an application of learning to quantify to monitoring and mitigating the bias of
classifiers; a journal paper is in preparation;

• A. Moreo and F. Sebastiani (both CNR), with J. Pickens (OpenText Inc.), are working on
an application of learning to quantify to estimating recall in technology-assisted review;

• A. Esuli, A. Moreo and F. Sebastiani (all CNR), with A. Fabris (University of Padova), are
in the process of finishing a book on learning to quantify, to appear in Springer Nature’s
“Information Retrieval Series”;

• A. Esuli, A. Moreo and F. Sebastiani (all CNR) have submitted a proposal for organizing
a “lab” (i.e., shared task) on learning to quantify at the CLEF 2022 conference (https:
//clef2022.clef-initiative.eu/), to be held in September 2022;

• A. Moreo and F. Sebastiani (both CNR) are co-organizers (with J.J. Del Coz and P. González,
both University of Oviedo) of a workshop on “Learning to quantify: Methods and Appli-
cations” (LQ 2021 – https://cikmlq2021.github.io/), co-located with the CIKM 2021
conference and to take place in November 2021.

6.2. Conclusions

In this deliverable, we presented the current research results of WP3 regarding the new learning
paradigms, specifically on the tasks: 3.1 (lifelong and on-line learning), 3.3 (transfer learning) and
3.7 (learning to count).

Several new methodologies bringing novel solutions and state of the art results are presented.
These include new approaches for novel class discovery, class-incremental learning, dynamic adap-
tation of DNNs and compatible feature learning that fall under the category of lifelong and on-line
learning (Task 3.1). The presented methodologies in Task 3.1 have been tested mainly on image
classification tasks including but not limited to fine-grained object recognition, face recognition,
landmark recognition and so forth, and represent generic approaches that could be modified to be
applied on other types of media data e.g., videos and audio.
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Important contributions, showing improved state of the art results, have been demonstrated for
transfer learning (Task 3.3) as well. A diverse set of challenging tasks of transfer learning: multi-
target domain adaptation, multi-source domain adaptation, and heterogeneous document embed-
dings for cross-lingual text classification have been addressed. The approaches that are tested on
image classification (i.e., multi-target domain adaptation and multi-source domain adaptation) can
be adapted to process other media, e.g., video and audio while heterogeneous document embedding
learning targets text classification. All methods rely on essential modalities of multimedia, those
considered are indeed covered by the use cases of AI4Media.

On the other hand, novel approaches developed for re-assessing quantification methods and
counting objects by leveraging domain adaptation (Task 3.7) provide solutions to analyze visual
content and therefore a service for various use of AI4Media.

In summary, the activity so far has been very intense and successful allowing us to have a
large number of already published articles (7 conference articles and 2 journal articles) and several
submitted contributions. The work reported in the deliverable is of very good quality and reflects
the active involvement of all the partners towards fulfilling the goals of the workpackage. While
this document covers only the initial results, the current trend is such that it is able to convincingly
assure the good continuation of the work according to the original planning. The deliverable D3.3
(M36) will include the outcomes of the ongoing and new work regarding the tasks covered in this
deliverable.

The only action point to be considered is the limited amount of reported joint activities. In
practice this is not actually critical considering that WP3 is mostly meant to be a “service”
workpackage used for developing tools for other WPs and the use cases. Nevertheless, the goal
in the near future is to foster joint research that can be mutually beneficial to the cooperating
partners. For instance, the WP3 partners will collaborate with the WP5 partners (recall that WP5
focuses in developing novel approaches for content-centered AI, addressing AI issues in content
production and processing, specifically targeting challenges in textual / visual / audio media,
multimedia production and enhancement, and summarisation) to address the limitations of deep
learning related to training data scarcity (e.g., through transfer and lifelong learning) extending
the potential applicability of AI to a wider set of media, and to apply CNN/DNN to improve tools
for analyzing content provenance and reuse (e.g., through lifelong and online learning and learn
to count). Similarly, the developed algorithms in WP3 would allow putting AI technologies to the
service of citizens and societies together with WP6 and use cases developed in WP8, resulting in
a potential collaboration between WP3 partners and WP6 and WP8.
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ing with bayesian neural networks for non-stationary data,” in International Conference on
Learning Representations, 2019.

Initial Outcomes of New Learning Paradigms Research 59 of 64



[109] J. von Oswald, C. Henning, J. Sacramento, and B. F. Grewe, “Continual learning with
hypernetworks,” in International Conference on Learning Representations, 2020.

[110] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan,
J. Quan, T. Ramalho, A. Grabska-Barwinska, et al., “Overcoming catastrophic forgetting in
neural networks,” Proceedings of the national academy of sciences, vol. 114, no. 13, pp. 3521–
3526, 2017.

[111] C. V. Nguyen, Y. Li, T. D. Bui, and R. E. Turner, “Variational continual learning,” arXiv
preprint arXiv:1710.10628, 2017.

[112] F. Zenke, B. Poole, and S. Ganguli, “Continual learning through synaptic intelligence,” in
Proceedings of machine learning research, vol. 70, p. 3987, Europe PMC Funders, 2017.

[113] H. Shin, J. K. Lee, J. Kim, and J. Kim, “Continual learning with deep generative replay,” in
Advances in Neural Information Processing Systems, pp. 2990–2999, 2017.

[114] S. Farquhar and Y. Gal, “Towards robust evaluations of continual learning,” arXiv preprint
arXiv:1805.09733, 2018.

[115] Y.-C. Hsu, Y.-C. Liu, A. Ramasamy, and Z. Kira, “Re-evaluating continual learning scenarios:
A categorization and case for strong baselines,” in arXiv preprint arXiv:1810.12488, 2018.

[116] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “icarl: Incremental classifier and
representation learning,” in Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition, pp. 2001–2010, 2017.

[117] D. Maltoni and V. Lomonaco, “Continuous learning in single-incremental-task scenarios,”
Neural Networks, vol. 116, pp. 56–73, 2019.

[118] G. M. van de Ven and A. S. Tolias, “Three scenarios for continual learning,” arXiv preprint
arXiv:1904.07734, 2019.

[119] F. Pernici, M. Bruni, C. Baecchi, and A. Del Bimbo, “Fix your features: Stationary and max-
imally discriminative embeddings using regular polytope (fixed classifier) networks,” arXiv
preprint arXiv:1902.10441, 2019.

[120] A. Torralba and A. A. Efros, “Unbiased look at dataset bias,” in Proc. CVPR, 2011.

[121] E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell, “Deep domain confusion: Max-
imizing for domain invariance,” arXiv, 2014.

[122] M. Long and J. Wang, “Learning transferable features with deep adaptation networks,” in
Proc. ICML, 2015.

[123] B. Sun and K. Saenko, “Deep coral: Correlation alignment for deep domain adaptation,” in
Proc. ECCV, 2016.

[124] X. Peng and K. Saenko, “Synthetic to real adaptation with generative correlation alignment
networks,” in Proc. WACV, 2018.

[125] F. M. Carlucci, L. Porzi, B. Caputo, E. Ricci, and S. R. Bulò, “Autodial: Automatic domain
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[172] V. González-Castro, R. Alaiz-Rodŕıguez, and E. Alegre, “Class distribution estimation based
on the Hellinger distance,” Information Sciences, vol. 218, pp. 146–164, 2013.

[173] D. J. Hopkins and G. King, “A method of automated nonparametric content analysis for
social science,” American Journal of Political Science, vol. 54, no. 1, pp. 229–247, 2010.

[174] R. Levin and H. Roitman, “Enhanced probabilistic classify and count methods for multi-label
text quantification,” in Proceedings of the 7th ACM International Conference on the Theory
of Information Retrieval (ICTIR 2017), (Amsterdam, NL), pp. 229–232, 2017.
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